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To model nonlinear viscous dissipative motions in solids, acoustical physicists usually add terms
linear in _E, the material time derivative of the Lagrangian strain tensor E, to the elastic stress
tensor r derived from the expansion to the third (sometimes fourth) order of the strain energy
density E ¼ Eðtr E; tr E2; tr E3Þ. Here it is shown that this practice, which has been widely used
in the past three decades or so, is physically wrong for at least two reasons and that it should be
corrected. One reason is that the elastic stress tensor r is not symmetric while _E is symmetric, so
that motions for which rþ rT 6¼ 0 will give rise to elastic stresses that have no viscous pendant.
Another reason is that _E is frame-invariant, while r is not, so that an observer transformation
would alter the elastic part of the total stress differently than it would alter the dissipative part,
thereby violating the fundamental principle of material frame indifference. These problems can
have serious consequences for nonlinear shear wave propagation in soft solids as seen here with
an example of a kink in almost incompressible soft solids.
VC 2013 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4776178]
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I. INTRODUCTION AND MAIN STATEMENT

Nonlinear elastic wave propagation is a subject of con-
siderable interest for many scientific and industrial applica-
tions such as geophysical exploration, soft tissue acoustics,
and the dynamics of rubbers, silicones, and gels. From a
theoretical point of view, the mathematics and mechanics
of nonlinear wave phenomena is a classical yet still active
subject of research where many outstanding problems are
awaiting a definitive systematic treatment.

In physical acoustics, the expansion of the strain energy
density E to include nonlinear corrections is often attributed
to Landau. Hence at the “third-order” in the Lagrangian
strain tensor E, we write

E ¼ lI2 þ
1

2
kI2

1 þ
1

3
AI3 þ BI1I2 þ

1

3
CI3

1; (1)

where Ik ¼ tr Ek (k ¼ 1; 2; 3) are the strain invariants, k and
l are the (second-order) Lam"e coefficients, and A, B, C are
the (third-order) Landau coefficients. From a historical point
of view, it is interesting to note that this notation by Landau
seems to have appeared first in their book Theory of Elastic-
ity (1986), co-written with Lifshitz, as an unnumbered equa-
tion in an exercise.1 In 1937, Landau2 had already provided
the third-order expansion of E, that time denoting the third-
order elastic constants by the letters P0, Q0, R0. That same

year, Murnaghan3 also proposed a third-order expansion
using different strain invariants, which is still in use today
(mostly by geophysicists). However, the paternity of the
third-order expansion can be traced further back in time, at
least to a 1925 paper by Brillouin,4 who in fact seems to
have also been the first to use the letters A, B, C for third-
order elastic constants.

In any event, Landau and Lifshitz denote by xk the
Lagrangian coordinate components, by uk the mechanical
displacement components, and they derive the equations of
motion in Cartesian coordinates as follows,

@rik

@xk
¼ q0

@2ui

@t2
; (2)

where q0 is the mass density in the undeformed configura-
tion, and the stress tensor is related to the strain through

rik ¼
@E

@ð@ui=@xkÞ
: (3)

(It is easy to recognize that this is the “first Piola–Kirchhoff
stress tensor” of classical continuum mechanics.) For the
reader’s convenience, we recall that the full Lagrangian
strain tensor E has Cartesian components

Eik ¼
1

2

@ui

@xk
þ @uk

@xi
þ
@uj

@xi

@uj

@xk

! "
; (4)

and can be rewritten as
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Eik ¼
1

2
ðFjiFjk % dikÞ: (5)

Here, Fik are the Cartesian components of F, the deformation
gradient, defined as

Fik ¼
@yi

@xk
¼ dik þ

@ui

@xk
; (6)

where yiðxkÞ are the space coordinates of the current position
of material point xk for the deformation given by
yiðxkÞ ¼ xi þ uiðxkÞ.

In another part of their book (more precisely: At the end
of §34 in Chap. 5), Landau and Lifchitz model viscous dissi-
pation by adding to the elastic stress tensor r a “viscosity
stress tensor” r0, with Cartesian components

r0ik ¼ 2g _Eik %
1

3
dik

_Ell

! "
þ f _Elldik

¼ f% 2

3
g

! "
_Elldik þ 2g _Eik; (7)

where g > 0 and f > 0 are the shear and bulk viscosity coef-
ficients, respectively, and the superposed dot denotes the
time derivative. Note that it is completely unambiguous
from the context of this part of their book that Landau and
Lifshitz are speaking here of the infinitesimal theory of
visco-elasticity, and that _E in Eq. (7) is the time derivative
of the infinitesimal strain tensor [i.e., the linear part of
Eq. (4)], see their unnumbered equation between (34.2) and
(34.3). It might seem at first glance that adding r0 to r, and
taking the strain components to be those of the finite Lagran-
gian strain (4) instead of the infinitesimal strain, would be a
first, logical step toward the inclusion of nonlinear dissipa-
tive effects. However, there are at least two problems with
this seemingly anodyne approach.

One problem is that r0 is symmetric while r is not. Then
the resultant total stress tensor rþ r0 has a visco-elastic
symmetric part: ðrþ rTÞ=2þ r0, but a purely elastic anti-
symmetric part: ðr% rTÞ=2, where the superscript T denotes
the transpose. It is thus impossible to model antisymmetric
viscous stress effects in motions and boundary conditions
with this formulation.

The other problem is that r and r0 are made objective,
or frame-indifferent, in two different and irreconcilable
ways. Indeed, it is well known that there are transformation
rules to follow to ensure that the directions associated with a
tensor are unaltered by an observer transformation. To sum-
marize, two observers, one associated with a frame with
position x and time t and the other associated with a frame
with position x& and time t& are said to be equivalent when
they are connected by (see, e.g., Chadwick5),

x& ¼ cðtÞ þ QðtÞx; t& ¼ t% a; (8)

where Q is a proper orthogonal tensor, c is a vector, and a is
a constant scalar. The transformation rule for the elastic part
of the stress tensor (3) is that r transforms into r given by

r ¼ Qr; (9)

to ensure frame-indifference, while for the viscous part (7),
it is

r0 ¼ r0; (10)

because E—and hence _E—is observer-invariant [this is not
so obvious from Eq. (4), but becomes more so in view of
Eq. (5), as shown in Ref. 5]. Clearly, it is not possible for the
composite stress tensor rþ r0 to comply with both require-
ments simultaneously and appear the same to two equivalent
observers. This state of affair violates the fundamental prin-
ciple of objectivity, a cornerstone of rational mechanics,
e.g., see Gurtin.6

Now there are two ways to reconcile r and r0 to con-
struct a stress tensor coherent with respect to symmetry and
objectivity. One way is to make r behave like r0 by replac-
ing it with F%1r, the (symmetric) second Piola–Kirchhoff
stress tensor; the other way is to make r0 behave like r by
replacing it with r0 ¼ Fr0.

Evidently, both courses of action are eventually equiva-
lent. In weakly nonlinear elasticity theory, governing equa-
tions have been around for r longer than for r0, and we
henceforth take advantage of these and concentrate on the
consequences of modifying r0 rather than r. We thus pro-
pose the following form for the viscous stress, r0 ¼ Fr0,
with components

r0ik ¼ Fijr0jk

¼ f% 2

3
g

! "
Fik

_Ell þ 2gFij
_Ejk

¼ f% 2

3
g

! "
dik þ

@ui

@xk

! "
_Ell þ 2g dij þ

@ui

@xj

! "
_Ejk; (11)

and investigate the consequences of using r0 instead of r0 in
the equations of motion.

In passing, it is interesting to show the form taken by
the constitutive equation for the Cauchy stress tensor s0,
related to r0 by

j s0ik ¼ r0isFks; (12)

where j ¼ det F. For this, we recall that5

_Eik ¼ FlidljFjk; (13)

where dlj is the Cartesian component of d, the Eulerian
stretching tensor,

dlj ¼
1

2

@vl

@yj
þ
@vj

@yl

! "
: (14)

and that the (symmetric) left Cauchy–Green strain tensor b
is defined as

bjl ¼ FjiFli; (15)

so that, in view of Eq. (13), the expression for _Eii can be
written as

_Eii ¼ FlidljFji ¼ bjldlj ¼ tr ðbdÞ: (16)
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Thus Eq. (11) yields

r0ik ¼ f% 2

3
g

! "
Fik

_Ell þ 2gFij
_Ejk

¼ f% 2

3
g

! "
Fik bjldlj þ 2gFij FljdlsFsk

¼ f% 2

3
g

! "
Fik bjldlj þ 2gbildlsFsk: (17)

From Eqs. (12), (13), and (16), we compute the viscous part
s0ik of the Cauchy stress as

js0im ¼ r0ik Fmk

¼ f% 2

3
g

! "
FikFmkbljdjlþ 2gbildlsFskFmk

¼ f% 2

3
g

! "
bimbildlsþ 2gbildlsbsm; (18)

or, in absolute notation,

js0 ¼ f% 2

3
g

! "
b tr ðbdÞ þ 2gbdb: (19)

It is quite clear that this is a polynomial isotropic function of
the two tensor variables b and d, which can be shown to be a
special case of the universal representation for such func-
tions [see, e.g., the classical treatise by Truesdell and Noll7

(Sec. 13) and the paper by Rivlin8]. It is reassuring to notice
that expression (19) for the viscous part of Cauchy stress s0

falls perfectly within the class of constitutive equations for
finite viscoelasticity. This makes much more plausible our
proposal (11) for a modified version of Eq. (7).

II. WAVE MOTION

When it comes to study wave propagation, attention is
usually focused on special motions for which the general
equations of motion simplify greatly. One might then be led
to believe that no relevant corrections should be made on the
governing equations as a consequence of the substitution of
Eq. (7) with the more appropriate version Eq. (11). In this
section, we show that this is not the case, indeed, and that
some relevant and quite complicated changes should be
made to the propagation equations even for simple (bulk)
motions.

We discuss the propagation in a soft material of a trans-
verse wave described by a displacement field uiðxk; tÞ of the
form

u1 ¼ uðz; tÞ; u2 ¼ u3 ¼ 0; (20)

where z is the third Cartesian coordinate. This is the choice
made by Zabolotskaya et al.,9 who added a viscous part in the
form (7) to an elastic constitutive equation [see their Eq. (34)].

Straightforward computations show that

F ¼
1 0 uz

0 1 0
0 0 1

2

4

3

5; E ¼ 1

2

0 0 uz

0 0 0
uz 0 u2

z

2

4

3

5 (21)

(here, for compactness, we denote partial derivatives with
subscripts, while in other formulas, we use the more explicit
notation, so that a comparison with some relevant references
is made easier).

The time derivative of E and its trace are thus given by

E ¼ 1

2

0 0 uzt

0 0 0
uzt 0 2uzuzt

2

4

3

5; trð _EÞ ¼ uzuzt; (22)

and, moreover,

F _E ¼ 1

2

1 0 uz

0 1 0
0 0 1

2

4

3

5
0 0 uzt

0 0 0
uzt 0 2uzuzt

2

4

3

5

¼ 1

2

uzuzt 0 uzt þ 2u2
z uzt

0 0 0
uzt 0 2uzuzt

2

4

3

5: (23)

Now, because by Eq. (11)

r0 ¼ f% 2

3
g

! "
trð _EÞFþ 2gF _E; (24)

we find that the Cartesian components of the viscous part r0

of the Piola–Kirchhoff stress tensor are given by

r0¼

fþ1

3
g

! "
uzuzt 0 guztþ fþ4

3
g

! "
u2

z uzt

0 f%2

3
g

! "
uzuzt 0

guzt 0 fþ4

3
g

! "
uzuzt

2

6666664

3

7777775
:

(25)

In their Sec. III, Zabolotskaya et al.9 investigate the
propagation of waves described by Eq. (20) in an almost
incompressible soft material with elastic strain energy

E ¼ lI2 þ
1

3
AI3 þ DI2

2; (26)

where l, A, D are second-, third-, and fourth-order elastic
constants, respectively. Terms of order higher than the third
in the strain @u=@z are then neglected, and the governing
equations reduce to the single equation

q0

@2u

@t2
¼ l

@2u

@z2
þ c

@

@z

@u

@z

! "3

; (27)

where q0 is the constant density and c ¼ lþ 1=2Aþ D, see
Ref. 9 [Eq. (12)].

Next, in Sec. V of Ref. 9, a viscous stress is added, in
the form of r0ik as defined here by Eq. (7), and an appropriate
modification for the governing Eq. (27) is deduced, which
leads to the introduction of an additional viscous term:

q0

@2u

@t2
¼ l

@2u

@z2
þ c

@

@z

@u

@z

! "3

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
elastic

þ g
@3u

@z2@t|fflfflffl{zfflfflffl}
viscous

: (28)
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This equation can also be found in the Refs. 10–12 for
instance. Our aim here is to verify which modifications
would be required for the wave Eq. (27) if the added viscous
Piola–Kirchhoff stress were defined by Eq. (11), as we sug-
gest, rather than by Eq. (7). In other words: What difference
does it make to the wave propagation equations to consider
such a stress tensor r0ik, rather than r0ik?

To answer this question we first compute the divergence
of r0, as

ðDivr0Þ1 ¼ g
@3u

@z2@t
þ fþ 4

3
g

! "
@

@z

@2u

@z@t

! "
@u

@z

! "2
" #

;

ðDivr0Þ2 ¼ 0;

ðDivr0Þ3 ¼ fþ 4

3
g

! "
@

@z

@u

@z

@2u

@z@t

! "
: (29)

Here we remark that the first and last of these components
lead to two non-trivial equations of motion, in contrast to the
situation encountered in Ref. 9, where there was only one
equation. The second equation here may, however, be made
to disappear if we were to consider soft solids to be perfectly
incompressible and had thus to introduce an arbitrary
Lagrange multiplier (for instance, see Ref. 13 for a rational
inclusion of perfect incompressibility in weakly nonlinear
elasticity, and Ref. 14 for a derivation of the equations of
motion in compressible and incompressible materials and the
possible decoupling of longitudinal from transverse waves).

Next, we readily derive the wave equation

q0

@2u

@t2
¼ l

@2u

@z2
þ c

@

@z

@u

@z

! "3

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
elastic

þ g
@3u

@z2@t
þ fþ 4

3
g

! "
@

@z

@2u

@z@t

! "
@u

@z

! "2
" #

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
viscous

:

(30)

The viscous part of this equation is remarkably more com-
plex than the simpler term g@3u=@z2@t shown in Eq. (28),
which is Eq. (36) of Ref. 9. Notice that the last addendum in
Eq. (30) is of third order in the strain @u=@z, exactly as the
nonlinear elastic term @=@zð@u=@zÞ3. Thus because Eq. (27)
was obtained in Ref. 9 by neglecting terms of order higher
than three, it is our opinion that, in principle, the additional
viscous term in (30) should be kept and considered for a
coherent discussion of wave propagation. Dimensional anal-
ysis reveals that this term would be negligible if fifth-order
elastic constants were much larger than lower-order con-
stants. Although this might be the case for some solids, it
can be shown by following the steps presented in Ref. 13
and Ref. 15 that for almost incompressible solids, all elastic
constants are of the same order as l (see Ref. 16 for experi-
mental evidence).

To illustrate the potential influence of the extra term in
Eq. (30), we focus on a staple of acoustic nonlinearity: The
finite amplitude, traveling kink solution. First we rewrite the
equation of motion for the strain:17 w ' @u=@z, as

q0

@2w

@t2
¼ l

@2w

@z2
þ c

@2

@z2
ðwÞ3 þ g

@3w

@z2@t

þ fþ 4

3
g

! "
@2

@z2
w2 @w

@t

! "
: (31)

Then we perform the following changes of variables and of
function:

n ¼
ffiffiffiffiffiffiffiffi
q0l
p

g
z; s ¼ l

g
t; W ¼

ffiffiffi
c
l

r
w; (32)

to obtain

@2W

@s2
¼ @

2W

@n2
þ @2

@n2
ðWÞ3 þ @3W

@n2@s

þ l
c

fþ 4

3
g

! "
@2

@n2
W2 @W

@s

! "
: (33)

Looking for a traveling wave solution in the form

Wðn; sÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
c2% 1
p

xðxÞ; where x¼ ðc2% 1Þðs% n=cÞ;
(34)

and c > 1 is the arbitrary, non-dimensional speed, we find
the following equation for the amplitude x:

x00 ¼ ðx3Þ00 þ x000 þ aðx2x0Þ00;

where a ' ðl=cÞ fþ 4

3
g

! "
ðc2 % 1Þ: (35)

It can be integrated twice for a finite kink with tails such that
xð%1Þ ¼ 0, xð1Þ ¼ 1, x0ð61Þ ¼ x00ð61Þ ¼ 0, to give

xð1% x2Þ ¼ ð1þ a x2Þx0: (36)

Now the variables of this equation can be separated, and by
centering the kink so that xð0Þ ¼ 1=2, we obtain its inverse
definition,

x ¼ %ln
1

2x
4

3
ð1% x2Þ

% &ðaþ1Þ=2

: (37)

It is a simple matter to construct the x% x curves and then
to invert them to generate the x% x curves. Explicit inver-
sions include

xðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3e%2x
p ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 3

4
ex

! "2
s

% 3

4
e%x; (38)

at a ¼ 0; 1, respectively. At a ¼ 0, there is no extra term in
Eq. (30); as soon as a 6¼ 0, the difference between the incor-
rect formulation and the proper formulation of viscous
effects is felt, as illustrated by Fig. 1.

III. CONCLUDING REMARKS

Viscous stresses are often introduced in the formulation
of nonlinear wave motion problems to prevent the formation
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of shocks because they confer a parabolic character to the
equations of motion for continua. However, as pointed out
earlier by Antman,18 the choices made historically in the
literature for these stresses sometimes turn out to be physi-
cally unacceptable because their material responses are
affected by rigid motions. Here we showed that simply
extending the linear Kelvin–Voigt model of differential
visco-elasticity from linearized to finite elasticity is not a
straightforward process. In particular, one choice is to take
the strain-rate effects to be described by the time derivative
of the full Lagrangian strain instead of the infinitesimal
strain. With that choice must come great care in formulat-
ing a corresponding viscous stress that obeys the fundamen-
tal principle of objectivity in the same manner that the
elastic stress does. We saw here that this compatibility can
be achieved by pre-multiplying the linear expansion of the
viscous stress in terms of _u by the deformation gradient F,
which complicates greatly the equations of motion, as illus-
trated in Sec. II.

An alternative constitutive assumption for modeling vis-
cous effects is to take the Cauchy stress tensor to be linear in
d, the Eulerian stretching tensor defined in Eq. (14). That
assumption is perfectly coherent with the fundamental prin-
ciples of mechanics, including frame-invariance, and is
aligned with modeling of viscous effects in fluid mechanics
and the emergence of the Navier–Stokes equations. It has
also been used to model nonlinear wave propagation in sol-
ids.14,17,19 It does not complicate the equations of motion
excessively.
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