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The application of pure torsion to a long and thin cylindrical rod is known to provoke a twisting instability,
evolving from an initial kink to a knot. In the torsional parallel-plate rheometry of stubby cylinders, the
geometrical constraints impose zero displacement of the axis of the cylinder, preventing the occurrence
of such twisting instability. Under these experimental conditions, wrinkles occur on the cylinder’s surface
at a given critical angle of torsion. Here we investigate this subclass of elastic instability—which we call
torsion instability—of soft cylinders subject to a combined finite axial stretch and torsion, by applying the
theory of incremental elastic deformation superimposed on finite strains. We formulate the incremental
boundary elastic problem in the Stroh differential form, and use the surface impedance method to build
a robust numerical procedure for deriving the marginal stability curves. We present the results for a
Mooney–Rivlin material and study the influence of the material parameters on the elastic bifurcation.

Keywords: elastic stability; torsion; Stroh formulation; surface impedance; central-impedance matrix

.

1. Introduction

The application of combined finite axial stretch and finite torsion to a solid right cylinder constitutes
one of the few universal solutions of nonlinear isotropic incompressible elasticity, where here ‘univer-
sal’ means that the deformation can be achieved for any homogeneous hyperelastic material by the
application of surface tractions alone.

The simple torsion of a solid cylinder can be defined as the deformation by which planes perpen-
dicular to the axis of the cylinder are rotated in their own plane through an angle proportional to their
distance from one end surface. In a seminal paper, Rivlin (1948a) found that a state of simple torsion
can be maintained by surface tractions alone (end couples and end compressive normal forces) for any
incompressible, neo-Hookean material. Further extensions were made in subsequent papers of the same
series by Rivlin, who calculated analytical expressions of such surface tractions for a generic incom-
pressible, isotropic material (Rivlin, 1948b), and for a hyperelastic tube subjected to combined axial
stretching and torsion (Rivlin, 1949). In that latter paper, Rivlin mentions that Dr H.A. Daynes had
drawn his attention to the earlier work of Poynting (1909), who had observed and measured the length-
ening of a steel wire and of a rubber rod upon twisting, and Rivlin provided a satisfactory theoretical
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TORSION INSTABILITY OF SOFT SOLID CYLINDERS 805

Fig. 1. Twisting a long cylindrical rod made of polyurethane: at first a large torsion takes place, followed by ‘twisting instability’
allowing for displacements on the axis, eventually turning into a twisting knot.

explanation to this phenomenon, later referred to as the positive Poynting effect. The results of Rivlin
were revisited and extended by many over the years. For instance, Horgan & Saccomandi (1999) found
that, if the strain energy density function used to model the behaviour of the cylinder depended only on
the first principal strain invariant, then there must exist a universal relation between the surface force
and the torque (universal relative to the class of incompressible materials with strain energy depending
only on the first principal invariant). Such a relative-universal relation is unlikely to be observed in prac-
tice, indicating that the strain energy should also depend on the second invariant. Additional discussion
on this subject was later provided by Wineman (2005).

It is intuitive to expect that the application of a compressive axial force during simple torsion should
eventually lead to a buckling instability once a certain threshold of torsion rate is reached. However,
there are very few studies of torsional instabilities on a solid cylinder to be found in the literature. Green
& Spencer (1959) found an analytical solution for neo-Hookean solids in the subclass of instability
modes giving rise to finite displacements on the axis of the cylinder. Duka et al. (1993) later studied the
numerical solution of this instability subclass for a generic Mooney–Rivlin solid. As initially guessed by
Green & Spencer (1959), their solution represents the ‘twisting instability’ of a cylindrical rod, evolving
from an initial kink to a knot, see Fig. 1, and Gent & Hua (2004) later presented an energetic analysis
of this transition.

A recent experiment by Mora et al. (2011) shows that when a cylindrical sample of soft gel with
small axial length/external radius ratio is deformed by a rheometer, it eventually displays a wrinkling
instability pattern on its surface at a finite critical value of the torsion rate, see their Fig. 4. In that
experimental scenario, the possibility of a displacement on the axis of the cylinder is prevented by the
geometrical constraints, and so an instability other than twisting is observed. This particular effect can
be easily reproduced by applying a torque by hand on a soft, short cylinder, as reproduced in Fig. 2. The
aim of our work is to investigate the onset of this new subclass of wrinkling instabilities for an isotropic,
incompressible, hyperelastic material. We call them torsion instabilities.

The paper is organized as follows. In Section 2, we recall the equations governing the kinematics of
the finite axial stretching and torsion of the soft cylinder, and derive the axial-symmetric solution. We
specialize the analysis to the class of Mooney–Rivlin materials in order to keep the number of consti-
tutive parameters low, while retaining dependence of the strain energy density on the first two principal
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806 P. CIARLETTA AND M. DESTRADE

Fig. 2. A short cylinder made of silicone rubber at rest (left) and after applying by hand a torque at the end surfaces (right). We
marked a solid black line to follow the deformation on the cylinder, while the arrow indicates the wrinkles formed at a critical
torsion rate.

strain invariants. In Section 3, we perform an incremental (linearized) stability analysis, by superpos-
ing a small-amplitude perturbation on this basic finite deformation. The incremental boundary-value
problem is derived and the corresponding numerical results are presented in Section 4 and discussed in
Section 5.

2. Finite torsion and stretching of a soft elastic cylinder

Let us consider an elastic cylinder made of an isotropic, homogeneous, nonlinearly elastic, incom-
pressible material, with axial length L and external radius Ro in the fixed reference configuration Ω0.
Using cylindrical coordinate systems, the kinematics of the deformation can be defined by a mapping
χ : Ω0 → �3 that brings the material point X = X(R, Θ , Z) to the spatial position x = x(r, θ , z) = χ(X)

in the deformed configuration, where (R, Θ , Z) and (r, θ , z) are the coordinates along the orthonormal
vector bases (E1, E2, E3) and (e1, e2, e3), respectively. In particular, the soft cylinder is subjected to a
finite stretching and torsion, so that:

r = R√
λz

, θ = Θ + γ λzZ, z = λzZ, (2.1)

where γ is the torsion angle per unit length and λz is the uniform stretching ratio in the axial direction
(γ λzL is the angle of torsion of the whole cylinder). In the current deformation, the cylinder has radius
ro = Ro/

√
λz and length l = λzL.

From Equation (2.1), the deformation gradient F = ∂χ/∂X has the following components in the
ei ⊗ Ej basis,

F =

⎡
⎢⎢⎢⎢⎣

1√
λz

0 0

0
1√
λz

rγ λz

0 0 λz

⎤
⎥⎥⎥⎥⎦ , (2.2)
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TORSION INSTABILITY OF SOFT SOLID CYLINDERS 807

and clearly, det F = 1, so that the imposed deformation is volume preserving and compatible with the
constraint of incompressibility.

From a constitutive viewpoint, we assume from now on that the cylinder behaves as a Mooney–
Rivlin hyperelastic material, so that its strain energy density W is given by

W = c1

2
(I1 − 3) + c2

2
(I2 − 3), (2.3)

where c1, c2 are positive material constants (and μ = c1 + c2 is the shear modulus) and I1, I2 are the
first two principal invariants of the left Cauchy–Green deformation tensor b = FF�, where the super-
script � denotes the transpose. Note that not all generality is lost by specializing the strain energy so
early. In particular, the Mooney–Rivlin strain energy function encompasses all weakly nonlinear elastic
incompressible models up to the third-order in the strain, as shown by Rivlin & Saunders (1951) (see
Destrade et al., 2010 for another proof). Also, as long as c2 |= 0, the problem of a relative-universal
relation, unlikely to be observed in practice, is avoided (more on this later).

From (2.2), we find the components of b in the ei ⊗ ej basis as

b =
⎡
⎢⎣

λ−1
z 0 0

0 λ−1
z + γ 2r2λ2

z rγ λz
2

0 rγ λz
2 λz

2

⎤
⎥⎦ , (2.4)

and thus compute its principal invariants as

I1 = tr b = λz
2 + 2λ−1

z + γ 2r2λ2
z , I2 = 1

2 [tr(b2) − tr2 b] = 2λz + λ−2
z + γ 2r2λ2

z . (2.5)

Using the constitutive relation in Equation (2.3), the Cauchy stress tensor σ can be written, by
Rivlin’s representation theorem, as

σ = c1b − c2b−1 − pI, (2.6)

where I is the second-order identity tensor, and p is a Lagrange multiplier arising from the incompress-
ibility constraint (det F − 1) = 0, to be determined from the equations of equilibrium and the boundary
conditions. Here, the non-zero components of the Cauchy stress from Equation (2.6) read

σrr = c1λ
−1
z − c2λz − p,

σθθ = c1(λ
−1
z + γ 2r2λ2

z ) − c2λz − p,

σzz = c1λ
2
z − c2(λ

−2
z + γ 2r2λz) − p,

σθz = σzθ = c1γ rλ2
z − c2γ rλz,

(2.7)

and, in the absence of body forces, the equilibrium equations are

div σ = 0. (2.8)

For the axis-symmetric deformation fields in Equation (2.1), the only non-vanishing equilibrium
equation in Equation (2.8) is

∂(rσrr)

∂r
− σθθ = 0, (2.9)
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808 P. CIARLETTA AND M. DESTRADE

and the traction-free boundary conditions at the external radius are

σrr(ro) = 0 at ro = R0/
√

λz. (2.10)

By integrating σrr in Equation (2.9), subject to Equation (2.10), the Lagrange multiplier p can be
determined as

p = c1

λz
− c2λz +

∫ ro

r
c1rγ 2λ2

z dr = c1

[
1

λz
+ γ 2λ2

z

2
(r2

o − r2)

]
− c2λz. (2.11)

Finally, it is straightforward to show that such a finite torsion and stretching of the cylinder can be
obtained by applying the following normal force N and a torque M on the end surfaces,

N = 2π

∫ ro

r=0
σzzr dr = πRo

2

[
(λz − λ−2

z )(c1 + c2λ
−1
z ) − γ 2Ro

2

2
(c1 + 2c2λ

−1
z )

]
(2.12)

and

M = 2π

∫ ro

r=0
σzθ r2 dr = πγ Ro

4

2
(c1 + c2λ

−1
z ), (2.13)

where Equations (2.7) and (2.11) have been used, see Rivlin & Saunders (1951).
In simple torsion, there is no axial stretch: λz = 1, and those expressions simplify to

N = −πγ 2Ro
4

4
(c1 + 2c2), M = πγ Ro

4

2
(c1 + c2). (2.14)

Here we first note that an axial compression is needed for imposing simple torsion because N < 0.
This is the so-called positive Poynting effect for hyperelastic solids, which is a nonlinear elastic effect
forcing the spread of the top surfaces of a cylinder under torsion. This axial compression increases
quadratically with an increasing torsional strain, and it is reasonable to hypothesize that a buckling
instability may occur beyond a certain critical torsion. We investigate this possibility in the next section.
Second, we note that if the dependence on I2 was dropped by taking c2 = 0 above (neo-Hookean case),
then the following relative-universal relation would be in force: 2N/γ 2 = −M/γ . In their experiments
on a vulcanized rubber cylinder of length and radius L = Ro = 2.5 cm, Rivlin & Saunders (1951) found
indeed that N and M were proportional to γ 2 and γ , respectively, in agreement with Equation (2.14).
However, they found that 2N/γ 2 = −0.0212 N/m2 and M/γ = 0.0157 N/m2 (Drozdov, 1996), showing
that the relative-universal relation does not hold and that the rubber in question must be modelled as a
Mooney–Rivlin material, not as neo-Hookean.

3. Linear stability analysis

In this section, we perform a linear stability analysis of the axis-symmetric solution for a soft cylinder
subjected to finite torsion and stretching. For this purpose, we first introduce the theory of incremental
deformations superimposed on finite strains. Next, we derive the incremental equilibrium equations and
boundary conditions in the Stroh form and finally, we propose a robust numerical procedure for solving
the resulting boundary value problem.
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TORSION INSTABILITY OF SOFT SOLID CYLINDERS 809

3.1 Incremental elastic theory

We perform a perturbation of the large axis-symmetric solution given by Equations (2.1), (2.7) and
(2.11) by using the theory of incremental deformations superimposed on finite strains (Ogden, 1997).
In practice, we proceed by writing

xp = χ(X) + χ̇(x), (3.1)

where xp is the perturbed spatial position, and we assume that the incremental displacement χ̇ is
infinitesimal and represents a first-order correction.

We define the associated spatial displacement gradient as Γ = grad χ̇ , and by simple differentiation
rules we find that the perturbed deformation gradient Fp reads

Fp = F + Ḟ = F + Γ F, (3.2)

where Ḟ is the incremental deformation gradient. Performing a series expansion of the constitutive
relation in Equation (2.6) to the first order, we express the components of the incremental stress Ṡ, i.e.
the push-forward of the nominal stress, as

Ṡji = LjiklΓkl + pΓji − ṗδji, (3.3)

where ṗ is the increment in the Lagrange multiplier p, δji is the Kronecker delta, and Ljikl are the com-
ponents of the fourth-order tensor of instantaneous moduli, i.e. the push-forward of the fixed reference
elasticity tensor. Explicitly,

Ljikl = Fjγ Fkβ

∂2W

∂Fiγ ∂Flβ
, (3.4)

where Einstein’s summation rule on repeated indices is assumed. For instance, the moduli for the
Mooney–Rivlin material (2.3) are

Ljilk = c1bjlδik + c2[2bijbkl + (bnnbjk − (b2)jk)δil − bilbjk − bikbjl]. (3.5)

Now, the incremental equilibrium equations take the following form:

div Ṡ = 0, (3.6)

while the vanishing of the incremental traction at the free surface gives

Ṡrr = Ṡrθ = Ṡrz = 0 at ro = R0/
√

λz. (3.7)

Finally, the incremental incompressibility constraint is written as

tr Γ = 0. (3.8)

Equations (3.6–3.8) represent the incremental boundary value problem, whose solution is now
investigated.
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810 P. CIARLETTA AND M. DESTRADE

Fig. 3. Surface pattern generated by a torsion instability perturbation superimposed on the finite torsion of a right cylinder. Here
we implement a perturbation in the form of a torsion instability where for illustrative purposes we take the angle of torsion to
be 60◦, no axial pre-stretch, and the amplitude of the perturbation to be one-tenth of the current radius. We chose to have one
wavelength axially (all three pictures) and, in turn, a circumferential wave number m = 0 (left), m = 1 (middle) and m = 7 (right).

3.2 Stroh formulation of the incremental problem

We develop the incremental deformation fields χ = [ur, uθ , uz]� by separation of variables, in the fol-
lowing form:

ur(r, θ , z) = U(r) cos(mθ − kzz), [uθ (r, θ , z), uz(r, θ , z)]� = [V(r), W(r)]� sin(mθ − kzz), (3.9)

where U , V are W are functions of r only, the circumferential mode number m is an integer, and the
axial wavenumber kz is a real number.

Figure 3 displays different modes that can be expressed by such a perturbation. For illustrative
purposes there, we took a right cylinder of stubbiness L/ro = 5, subject to a large torsion of angle
γ L = 60◦ and no axial pre-stretch (λz = 1), onto which we superimposed a perturbation in the form of
Equation (3.9), with U(ro) = V(ro) = W(ro) = 0.1ro (small amplitude perturbation) and kzro = 1 (axial
wave number). (For a more accurate picture of an actual torsion instability, the critical parameters γ , kz,
and the relative displacements U(ro), V(ro) and W(ro), must be computed from the stability analysis
of Section 4, depending on the values of the constitutive parameters c1 and c2.) By observation of
Equation (3.9) and of the figure we can confirm that from now on we can discard the case m = 0 because
it represents an axis-symmetric perturbation, of no relevance to torsional instability. We further note that
the pictures for the m = 0 and m = 1 perturbation modes closely match those of the early Euler buckling
of a right cylinder under compression, see De Pascalis et al. (2011).

We now try to model the experimental conditions at play in the torsion and stretch deformation field
created by a rheometer. Because there, the top and bottom faces are glued to plates rotating about a fixed
axis, we impose that the centre of the top face be directly aligned with that of the bottom face. This is
achieved when

kz = 2nπ

l
= 2nπ

λzL
, (3.10)

where the integer n is the axial mode number.
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TORSION INSTABILITY OF SOFT SOLID CYLINDERS 811

By substituting Equation (3.9) into Equation (3.3), we can express the components of the incremen-
tal stress tensor in a form similar to that of the displacements,

[Ṡrr(r, θ , z), ṗ(r, θ , z)]� = [Srr(r), P(r)]� cos(mθ − kzz),

[Ṡrθ (r, θ , z), Ṡrz(r, θ , z)]� = [Srθ (r), Srz(r)]
� sin(mθ − kzz),

(3.11)

say, where P and Sij are functions of r only.
This formulation allows a great simplification of the boundary value problem. Hence, the incom-

pressibility constraint in Equation (3.8) can be rewritten as

U + mV + r(U ′ − kzW) = 0, (3.12)

where the prime denotes differentiation with respect to r. Moreover, the increment ṗ of the Lagrange
multiplier can be found from the constitutive equation for ṡrr , as follows:

P = −rSrr + Lrrθθ (U + mV) − kzrLrrzθV + mLrrθzW − kzrLrrzzW + r(p + Lrrrr)U
′. (3.13)

Further simplifications arise once we introduce the displacement-traction vector η as

η = [U , V , W , irSrr, irSrθ , irSrz]
�, (3.14)

where ‘i’ is the imaginary unit. Indeed, using Equations (3.9), (3.11) and (3.13), it is possible to rewrite
the entire boundary value problem given by Equations (3.3), (3.6) and (3.8) as the following first-order
differential system:

dη

dr
= i

r
Gη, (3.15)

which is called the Stroh formulation of the incremental problem. In particular, the Stroh matrix G
admits the following block representation:

G =
[
G1 G2

G3 G+
1

]
, (3.16)

where the 3 × 3 sub-blocks G2 and G3 are real symmetric, and the symbol + denotes the adjugate
(i.e. transpose conjugate) matrix operator. In particular, the matrices G1 and G2 admit the following
simplified representations:

G1 =

⎡
⎢⎢⎢⎢⎣

i im −ikzr
iδ1

β
− iδ2

β
0

− iδ3

β
− iδ4

β
0

⎤
⎥⎥⎥⎥⎦ , G2 =

⎡
⎢⎢⎢⎢⎣

0 0 0

0
Lrzrz

β
−Lrθrz

β

0 −Lrθrz

β

Lrzrz

β

⎤
⎥⎥⎥⎥⎦ , (3.17)
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812 P. CIARLETTA AND M. DESTRADE

with

β = L2
rθrz − LrθrθLrzrz,

δ1 = m[(p + Lrθθr)Lrzzr − LrθrzLrzθr] + kzr[−LrθzrLrzrz + Lrθrz(p + Lrzzr)],

δ2 = −(p + Lrθθr)Lrzrz + LrθrzLrzθr,

δ3 = m[(p + Lrθeθ )Lrzrθ − LrθrθLrzrθ ] + kzr[−LrθzrLrθrz + Lrθrθ (p + Lrzzr)],

δ4 = (p + Lrθrθ )Lrzrθ − LrθrθLrzθr. (3.18)

The expression of G3 is very lengthy and although we have obtained it formally with a Computer
Algebra System, we do not report it here for the sake of brevity. Great simplifications arise when dealing
with a neo-Hookean material (c1 = μ, c2 = 0), as reported in Appendix.

Finally, considering that m and kz are integer- and real-valued, respectively, it is easy to show that
the Stroh matrix G displays the following symmetry (Shuvalov, 2003):

G = TG+T, (3.19)

where T has zero diagonal sub-block matrices, while off-diagonal blocks are identity matrices.
The Hamiltonian structure and algebraic properties of the Stroh matrix form the basis of the robust

asymptotic and numerical procedures presented in the next sections. We note that Duka et al. (1993)
have also put the incremental problem in the form of a first-order differential system, although not in
the present, optimal, Stroh form.

3.3 Numerical solution using the solid-cylinder impedance matrix

Following Shuvalov (2003), we rely on the impedance matrix method for solving the incremental elastic
problem.

Let us define the 6 × 6 matricant M(r, ri) as the solution of the initial value problem:[
d

dr
− i

r
G(r)

]
M(r, ri) = 0 with M(ri, ri) = I(6), r, ri |= 0. (3.20)

Thus, from Equations (3.15,3.20), the displacement-traction vector solution can be expressed as follows:

η(r) = M(r, ri)η(ri) =
[
M1(r, ri) M2(r, ri)

M3(r, ri) M4(r, ri)

]
η(ri). (3.21)

Now if we define
u = [U(r), V(r), W(r)]�, t = [Srr(r), Srθ (r), Srz(r)]

�, (3.22)

as the displacement and traction vectors, respectively, then the displacement-traction vector can be
expressed as η = [u, ir t]�. It is then possible to define a functional relation between the traction and the
displacements vectors, reading:

r t = Z u, (3.23)

where Z is a surface impedance matrix. Here, one can build an expression for Z either by using the con-
ditional (i.e depending on its value at r = ri) impedance matrix, as Z = Z(r, ri) = −iM3(r, ri)M−1

1 (r, ri)

for a stress-free boundary condition imposing Z(ri) = 0, or by using the solid-cylinder impedance matrix
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TORSION INSTABILITY OF SOFT SOLID CYLINDERS 813

Z = Z(r), independent of an auxiliary condition at some other coordinate, see Shuvalov & Norris (2010)
for details.

In either way, the Stroh formulation in Equation (3.15) can be manipulated by substituting
Equation (3.23) to eliminate the dependence on u. Accordingly, the differential system is transformed
into a differential Riccati equation for Z, namely

d

dr
Z = 1

r

(
G3 + ZG2Z − iZG1 + iG+

1 Z
)

. (3.24)

Recalling, from Equation (2.13), that the matricant solution diverges for r → 0, this method is of
no use for determining the solution on the cylinder axis. Conversely, the limiting value Z0 ≡ Z(r = 0)

in Equation (3.23), also known as central-impedance matrix (Shuvalov & Norris, 2010), is of utmost
importance for solving the incremental problem of a solid cylinder. Shuvalov (2003) demonstrated that
the fundamental solution of Equation (3.15), having a regular singular point at r = 0, can be expressed
in the form of a Frobenius series depending on the eigenspectrum of the matrix iG(0). From Equa-
tions (2.2), (3.4), (3.16) and (3.17), we find that the sub-blocks of G(0) read:

G1(0) =
⎡
⎣ i im 0

δ̄ δ̄ 0
0 0 0

⎤
⎦ ,

G2(0) =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0

0 − λz(c1λz + c2)

c2
1λz + c1c2

(
1 + λ3

z

) + c2
2λ

2
z

0

0 0 − λz(c1λz + c2)

c2
1λz + c1c2

(
1 + λ3

z

) + c2
2λ

2
z

⎤
⎥⎥⎥⎥⎥⎦ (3.25)

with

δ̄ = i
2c2

2(1 + λ3
z ) + c2λ

3
z (−γ 2R2

o + 2λz)c1 + λ2
z (−2 − γ 2R2

oλ
2
z )c

2
1

2λz(c2
2λ

2
z + c2(1 + λ3

z )c1 + λzc2
1)

,

and

G3(0) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

− i(−16 − 4γ 2(R2
o − m2R2

o)λ
2
z + γ 4 m2R4

oλ
4
z )

4λz
− im(−16 + γ 4R4

oλ
4
z )

4λz
0

− im(−16 + γ 4R4
oλ

4
z )

4λz

i(4 m2(4 + γ 2R2
oλ

2
z ) + λ2

z (−4γ 2R2
o − γ 4R4

oλ
2
z ))

4λz
0

0 0
im2

λz

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3.26)

Using Equations (3.25) and (3.26), it is now possible to show that the eigenvalues of iG(0) are λG =
{±(m − 1), ±m, ±(m + 1)}, all independent on the imposed deformation and on the material properties.
In particular, we find that all such eigenvalues λG differ by an integer, so that the Frobenius power
expansion requires the introduction of additional terms compared to the solution given by Shuvalov
& Norris (2010). Moreover, in the case m = 1 we also find that iG(0) is not semi-simple, due to the
presence of rigid-body motions. We discuss this special case in further detail in the next section.
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814 P. CIARLETTA AND M. DESTRADE

For our purposes, it is easier to identify the central impedance matrix Z0 as the stable solution of the
following algebraic Riccati equation (Shuvalov & Norris, 2010),

G3(0) + Z0G2(0)Z0 − iZ0G1(0) + iG+
1 (0)Z0 = 0, (3.27)

hence avoiding non-physical singularity at r = 0 in Equation (3.24). The stable solution is the unique,
symmetric, semi-definite solution Z0 which can be found by imposing that all eigenvalues of the matrix
−iG1(0) + G2(0)Z0 be negative. Considering the Taylor expansion Z(r) = ∑∞

n=0 Znrn, the matrix Z1

can be calculated from Equation (3.24) at the first order in r, as the stable solution of the following
algebraic Riccati equation:

G3(r) + Z0G2(r)Z0 − iZ0G1(r) + iG+
1 (r)Z0 + r2Z1G2(r)Z1

− irZ1

[
G1(r) − G2(r)Z0 − i

2
I
]

+ ir

[
G†

1(r) − Z0G2(r) + i

2
I
]

Z1 = 0. (3.28)

Choosing a starting point rc 
 1, the solution of the incremental problem can be found by integrating
numerically Z(r) in Equation (3.24) using the initial value Z(rc) = Z0 + rcZ1, with Z0 and Z1 given
by Equations (3.27) and (3.28), respectively. Performing iterations on all the coefficients determining
the order parameter of the bifurcation, the target condition of the numerical integration is given by the
boundary condition in Equation (3.7), and reads:

det Z(ro) = 0. (3.29)

In summary, the elastic boundary problem is transformed into the differential Riccati equation for
Z in Equation (3.24), which can be integrated numerically by imposing the non-singularity of the
central-impedance matrix Z0 and the boundary condition in Equation (3.29). The numerical results
are detailed in the next section.

4. Results

In this section, we present results for the linear stability analysis of a soft solid cylinder subjected to
finite torsion and axial stretching. We report in turn results for neo-Hookean materials (c1 = μ, c2 = 0)
and for Mooney–Rivlin materials (c1 |= 0, c2 |= 0).

As explained in the previous section, the case m = 1 requires a special consideration because the
matrix iG(0) then has a doubly degenerate eigenvalue. As a consequence, the central-impedance matrix
Z0 is semi-definite, indicating the occurrence of rigid-body motion modes. As first reported by Green
& Spencer (1959) for a neo-Hookean solid, finite non-zero displacements on the axis of the cylinder
arise only in the case m = 1, leading to the classical problem of a twisted Euler rod, forming an helix
of pitch 1/kz. This instability can evolve with the sudden onset of a sharply bent ring, or knot (see
Fig. 1), as investigated by Gent & Hua (2004). Eventually, the helical patterns can turn into localized
writhing in the post-buckling torsional behaviour (Thompson & Champneys, 1996), which can explain,
for example, DNA supercoiling (Neukirch & Marko, 2011). Although such effects have been widely
investigated in the literature, there seems to be no information to be found regarding higher order torsion
instabilities. For this reason, we leave aside the case m = 1 in what follows, and we investigate the onset
of torsion instabilities with m � 2, corresponding to a zero displacement on the axis of the cylinder.
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TORSION INSTABILITY OF SOFT SOLID CYLINDERS 815

Fig. 4. Instability curves for neo-Hookean materials, showing the critical torsion rate γ versus the longitudinal wavenumber kz,
setting ro as unit length. The curves are depicted at varying circumferential mode numbers m (left, with λz = 1) and varying axial
stretch λz (right, with m = 2). The axes origin is set at γ = 3 and kz = 5 for matters of graphical convenience.

4.1 Torsion instabilities for a neo-Hookean material

In the case of a neo-Hookean material (i.e. c1 = μ, c2 = 0), the Stroh matrix has the simplified form
given in Appendix. As first reported by Green & Spencer (1959), the corresponding incremental bound-
ary value problem admits the following analytical solution:

U(r) =
3∑

j=1

Aj

[
Im−1(qjr) − m(λ−3

z q2
j + 2γ (mγ − kz) − (γ − kz)

2)

qjr(λ−3
z q2

j − (mγ − kz)2)
Im(qjr)

]
,

V(r) = 1

r

3∑
j=1

Aj

[
2γ r(mγ − kz)

λ−3
z q2

j − (mγ − kz)2
Im−1(qjr) − m(λ−3

z q2
j + 2γ (mγ − kz) − (mγ − kz)

2)

qj(λ−3
z q2

j − (mγ − kz)2)
Im(qjr)

]
,

W(r) =
3∑

j=1

Aj

[
qj

kz
Im(qjr)

]
, (4.1)

where Aj are arbitrary constants, Im(qjr) is the modified Bessel function of the first kind of order m, and
±qj are the distinct roots of the following characteristic equation:

λ−6
z q6 − λ−3

z [λ−3
z k2

z + 2(mγ − kz)
2]q4 + (mγ − kz)

2[2λ−3
z k2

z + (mγ − kz)
2]q2

+ k2
z (mγ − kz)

2[4γ 2 − (mγ − kz)
2] = 0. (4.2)

However, if the roots of Equation (4.2) are not all distinct (e.g. for mγ = kz there are four roots equal to
zero), then the solution in Equation (4.1) is no longer valid. Therefore, the proposed numerical procedure
relying on the Riccati equation in Equation (3.24) with Equations (3.27–3.29) is much easier and robust
to run to completion in order to derive the instability threshold than by the means of the analytical
solution.

Figure 4 depicts our numerical results for the torsion instability of a neo-Hookean material with
m � 2, for different circumferential modes numbers m and axial pre-stretches λz.

We plot the bifurcation curves with γ ro on the vertical axis and kzro on the horizontal axis. Hence
the first quantity is a measure of the angle of torsion, and the second a measure of the cylinder stubbiness
Ro/L, according to (3.10). We find that torsion instability occurs with increasing mode numbers m as the
stubbiness increases, and that it is slightly promoted by an axial extension of the cylinder (and slightly
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816 P. CIARLETTA AND M. DESTRADE

Fig. 5. Instability curves for Mooney–Rivlin materials, showing the critical torsion rate γ versus the longitudinal wavenumber kz,
setting ro as unit length. The curves are depicted at varying circumferential mode numbers m with λz = 1 for c2/c1 = 1 (left) and
c2/c1 = 1.5 (right).

Fig. 6. Instability curves for Mooney–Rivlin materials, showing the critical torsion rate γ versus the longitudinal wavenumber kz,
setting Ro as unit length. The curves are depicted at varying circumferential mode numbers m (left, where c1 = 0 and λz = 1) and
axial stretch λz (right, where c2/c1 = 1 and m = 50).

retarded by axial compression). For instance, in simple torsion, i.e. λz = 1, the earliest critical threshold
of torsion instability is found at m = 2, γ ro � 2.83743, for kzro � 3.9.

4.2 Torsion instabilities for a Mooney–Rivlin material

In the case of a Mooney–Rivlin material (c1 |= 0, c2 |= 0), we find that the onset of the instability is
strongly dependent on the value of the ratio of the constitutive parameters c2/c1. The results of the
incremental boundary value problem are collected in Figs. 5–6.

In particular, we find that the threshold of the torsion rate necessary for the onset of the instability
is always lower than for the one found for a neo-Hookean material. Also, both the circumferential
and the longitudinal modes of the instability strongly depend on the material constants (e.g. we find
γ ro � 0.2716, m = 50 and kzro � −43.45 for c2/c1 = 1.5 in Fig. 5). Although a general trend cannot be
clearly identified, it seems that a surface instability mechanism at high mode number m is the dominant
scenario for Mooney–Rivlin materials.
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TORSION INSTABILITY OF SOFT SOLID CYLINDERS 817

5. Discussion and conclusions

We investigated the occurrence of elastic instabilities of a soft incompressible cylinder subjected to
a combination of finite axial stretching and finite torsion. We assumed a Mooney–Rivlin constitutive
relation in Equation (2.3) in order to account for weakly nonlinear effects up to third order in the strain.
The basic axial-symmetric deformation is given by Equation (2.1), and the elastic solution for the normal
force and the torque at the top surfaces is given by Equations (2.12) and (2.13). Using the theory of
incremental elastic deformations superimposed on finite strains, we derived the Stroh formulation of the
incremental boundary elastic problem in Equation (3.15). Introducing the surface impedance matrix Z in
Equation (3.23), we rewrote the differential system as a differential Riccati equation in Equation (3.24).
In this theoretical framework, the central-impedance matrix Z0 plays a fundamental role for determining
the incremental solution. In order to define a robust numerical procedure, we identified such a matrix as
the stable solution of the algebraic Riccati equation in Equation (3.27), hence avoiding singularities at
r = 0. Finally, we computed the numerical solutions by performing iterations on the order parameters
driving the elastic bifurcation, while the onset of the instability is given by the target condition of
Equation (3.29).

Leaving aside the oft-studied case of twisting instability, see Fig. 1, we focused instead on the occur-
rence of torsion instability, i.e. the formation of surface wrinkles occurring when the axis displacements
are prevented by geometrical constraints, see Fig. 2. In the case of a neo-Hookean material, the marginal
stability curves are depicted in Fig. 4. The critical threshold for the torsion rate in the case of simple
torsion is calculated for γ ro � 2.83743, within the experimental range found by Mora et al. (2011). The
marginal stability curves for a Mooney–Rivlin material are depicted in Figs. 5–6 for different ratios
c2/c1 of elastic coefficients and axial pre-stretch λz. In particular, we find that a surface instability
mechanism arises, i.e. formation of wrinkles with short circumferential and axial wavelengths, with
lower values of the critical threshold for the torsion rate.

In conclusion, we demonstrated that a subclass of torsional instabilities occur when the axis dis-
placement of the cylinder is prevented. The validity of our new theoretical predictions could be easily
checked experimentally by applying finite torsion and axial stretch with a rheometer to a soft, incom-
pressible cylinder having a small axial length/external diameter ratio.
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Appendix. Stroh matrix for a neo-Hookean material

Let us consider a neo-Hookean material, setting c1 = μ and c2 = 0 in Equation (2.3). In this case, from
Equations (3.4) the instantaneous elastic moduli reduce to

Ljilk = μbjlδik . (A.1)

Substituting Equations (2.4) and (A.1) into Equation (3.15), the blocks of the Stroh matrix take the
following forms:

G1 =
⎡
⎢⎣

i im −ikzr

− 1
2 im

[
2 + γ 2λ2

z

(
R2

o − r2λz
)] − 1

2 i
[
2 + γ 2λ2

z

(
R2

o − r2λz
)]

0
1
2 ikzr

[
2 + γ 2λ2

z

(
R2

o − r2λz
)]

0 0

⎤
⎥⎦ (A.2)
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and

G2 =
⎡
⎣0 0 0

0 −λz/μ 0
0 0 −λz/μ

⎤
⎦ , G3 =

⎡
⎢⎢⎢⎢⎢⎣

−α1μ

4λz
−α12μ

4λz
−α13μ

2λz

−α12μ

4λz
−α2μ

4λz
−α23μ

λz

−α13μ

2λz
−α23μ

λz

α3μ

λz

⎤
⎥⎥⎥⎥⎥⎦ (A.3)

with⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α1 = (−16 + 8γ kzmr2λ3
z + γ 4 m2λ4

z (R
2
o − r2λz)

2 − 4γ 2λ2
z (R

2
o − m2R2

o + 2m2r2λz)

+k2
z r2(4 + λ2

z (−4λz + γ 2(R2
o − r2λz)(4 + γ 2λ2

z (R
2
o − r2λz))))),

α2 = (8γ kzmr2λ3
z − 4 m2(4 + γ 2R2

oλ
2
z ) + λ2

z (−4k2
z r2λz + 4γ 2(R2

o − 2r2λz) + γ 4λ2
z (R

2
o − r2λz)

2)),

α3 = (m2 + γ r2(−2kzm + γ m2 − γ k2
z r2)λ3

z + k2
z r2(3 + γ 2R2

oλ
2
z + λ3

z )),

α12 = (8γ kzr2λ3
z + m(−16 − 8γ 2r2λ3

z + γ 4λ4
z (R

2
o − r2λz)

2)),

α13 = kzr(4 + γ 2λ2
z (R

2
o − r2λz)),

α23 = kzmr(3 + γ 2λ2
z (R

2
o − r2λz)).

(A.4)
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