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a b s t r a c t

We revisit an iconic deformation of non-linear elasticity: the inflation of a rubber spherical thin shell. We
use the 3-parameter Mooney and Gent-Gent (GG) phenomenological models to explain the stretch–
strain curve of a typical inflation, as these two models cover a wide spectrum of known models for
rubber, including the Varga, Mooney–Rivlin, one-term Ogden, Gent-Thomas and Gent models. We find
that the basic physics of inflation exclude the Varga, one-term Ogden and Gent-Thomas models. We find
the link between the exact solution of non-linear elasticity and the membrane and Young–Laplace
theories often used a priori in the literature. We compare the performance of both models on fitting the
data for experiments on rubber balloons and animal bladder. We conclude that the GG model is the most
accurate and versatile model on offer for the modelling of rubber balloon inflation.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

An early success of the modern theory of non-linear elasticity,
as initiated by Ronald Rivlin in the 1950s, has been the satisfactory
modelling of the inflation of a spherical shell. As early as 1909,
Osborne [1] noticed that rubber balloons and monkey bladders
had a completely different mechanical response to inflation. As is
known to anyone who has blown up a rubber party balloon, the
initial inflation requires a strong effort, followed by an easing of
the pressure required to continue until a new stiffening regime is
entered, going all the way to rupture. In contrast, the pressure–
radius graph for balloons made of biological tissue (such as early
footballs) has a J shape corresponding to an ever increasing,
monotonic, effort. Fig. 1 reproduces Osborne's classic results (we
digitised the graphs displayed in the original 1909 article).

For incompressible isotropic materials, inflation is a universal
solution and thus any strain energy density can be a candidate to
model the behaviour of a real blown-up material. In this paper we
revisit some salient features of this inhomogeneous solution.
Starting from the exact solution of non-linear elasticity for inflated
finite thickness spherical shells, we recover and justify rigorously
some of the assumptions made sometimes a priori for thin elastic
membranes. For instance in linear elasticity it is often assumed
that the normal stress component in the membrane is small
compared to the circumferential stress components: here we show

that when expanded, the ratio of the former to the latter is of
order one in the relative shell thickness δ¼ B=A�1, where A and B
are the inner and outer initial radii, respectively. Similarly, for
modelling rubber balloons, it is often assumed that the Young–
Laplace equations for the equilibrium of bubbles should apply.
Here we provide a rigorous basis for making that assumption.
These connections are derived in Section 2, and then repeated in
the Appendix for the case of cylindrical shells.

Using the approximation for the radial stress, we then look
for strain energy densities which would give a reasonable fit of
some classic data to phenomenological models. Hence in Section 3
we evaluate the performance of two 3-parameter models, which
more or less cover the entire known spectrum of stress–strain
response for rubber-like materials, including the neo-Hookean,
Mooney–Rivlin, Varga, one-term Ogden, Gent-Thomas and Gent
models. We establish explicitly and/or numerically the limitations
to be imposed on the material parameters to predict reasonable
physical behaviour.

2. Derivation of the pressure–stretch relationship

Here we recall the exact equations governing the equilibrium of
spherical shells subject to hydrostatic pressure (see e.g., Ogden [2])
and then specialise them to the case of a thin membrane.

Consider a spherical shell made of an incompressible isotropic
hyperelastic material. Let X¼XðR;Θ;ΦÞ and x¼ xðr;θ;ϕÞ denote
the position of a material particle in the reference and current
configurations, respectively. The associated orthonormal bases are
ðE1;E2;E3Þ and ðe1; e2; e3Þ, respectively. Suppose that the shell is
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subject to a uniform internal pressure P and assume that it retains
its spherical symmetry as it inflates. Then, for purely radial
deformations, the motion of a particle in the shell can be described
by

r¼ rðRÞ; θ¼Θ; ϕ¼Φ: ð2:1Þ

From (2.1), we find that the deformation gradient, F¼ ∂x=∂X, is
given by

F¼ diagðdr=dR; r=R; r=RÞ; ð2:2Þ

in the ðei � EjÞ basis. The stretch is the ratio of the length of a line
element in the current configuration to the length of the corre-
sponding line element in the reference configuration. The princi-
pal stretches are the square roots of the eigenvalues of the left
Cauchy–Green tensor, B¼ FFT , and the principal directions are
along the corresponding eigenvectors. Here, the principal stretches
are thus

λ1 ¼
dr
dR

and λ2 ¼ λ3 ¼
r
R
; ð2:3Þ

and the corresponding principal directions are along e1; e2 and e3,
respectively. Here λ1 is the radial stretch and λ2 is the circumfer-
ential stretch. Using the incompressibility condition, det F¼ λ1
λ2λ3 ¼ 1, we have

dr
dR

¼ R2

r2
: ð2:4Þ

Letting A, B and a, b denote the inner radius and outer radius of
the shell in the reference and current configurations, respectively,
and solving (2.4) leads to

R3�A3 ¼ r3�a3; R3�B3 ¼ r3�b3; ð2:5Þ

so that

1�λ3a ¼
R3

A3ð1�λ3Þ ¼ B3

A3ð1�λ3bÞ; ð2:6Þ

where λ� λ2 ¼ r=R, λa ¼ a=A and λb ¼ b=B.
The Cauchy stress tensor, T, describes the state of stress in the

deformed material. Due to the symmetry of the problem, there are
no shear stresses in the ðei � ejÞ basis, so that the only non-zero
components of the Cauchy stress tensor T are t1 ¼ T11 (radial
stress) and t2 ¼ T22 ¼ T33 (hoop stress). These are the principal
stresses. Because the shell is made of an incompressible isotropic

hyperelastic material, they are given by [2]

t1 ¼ λ1
∂W
∂λ1

�p; t2 ¼ λ2
∂W
∂λ2

�p; ð2:7Þ

whereW ¼Wðλ1; λ2; λ3Þ is the strain energy density function and p
is a Lagrange multiplier associated with the incompressibility
constraint, det F¼ 1, to be determined from the boundary
conditions.

In the absence of body forces, the equations for mechanical
equilibrium reduce to

div T¼ 0: ð2:8Þ
Computing the divergence in spherical polar coordinates, we find
that the only non-trivial component of (2.8) is

dt1
dr

¼ 2
r
ðt2�t1Þ: ð2:9Þ

Next, we define the auxiliary function Ŵ ðλÞ ¼Wðλ�2
; λ; λÞ. Then

we can show that this equation is equivalent to [2]

dt1
dλ

¼ Ŵ
0ðλÞ

1�λ3
: ð2:10Þ

We call P the inflation, i.e. the excess of the internal pressure
over the external pressure, so that the boundary conditions are
t1ðλaÞ ¼ �P and t1ðλbÞ ¼ 0. Integrating (2.10) and imposing the
boundary conditions, we find that

t1ðλÞ ¼
Z λ

λb

Ŵ
0ðsÞ

1�s3
ds and P ¼

Z λb

λa

Ŵ
0ðλÞ

1�λ3
dλ; ð2:11Þ

where s is a dummy variable. Now, introducing the thickness
parameter δ¼ ðB�AÞ=A and noting from (2.6) that

λb ¼ 1� 1�λ3a
ð1þδÞ3

; ð2:12Þ

we can expand P in powers of δ to find

P ¼ δ
Ŵ

0ðλÞ
λ2

þ δ2

2λ4
λ3�2
λ

Ŵ
0ðλÞ�ðλ3�1ÞŴ ″ðλÞ

" #
þOðδ3Þ; ð2:13Þ

where λ¼ λa½1þOðδÞ�. Hence, for thin shells, P can be approxi-
mated by

P ¼ δ
Ŵ

0ðλÞ
λ2

: ð2:14Þ

Pressure
(mm H2O)

Radius (cm)

Pressure
(mm H2O)

Radius (cm)

Fig. 1. Pressure–radius curves, digitised from Osborne's 1909 article [1]. (a) Inflation of a rubber balloon, (b) inflation of a monkey bladder.

R. Mangan, M. Destrade / International Journal of Non-Linear Mechanics 68 (2015) 52–58 53



Similarly, we can also approximate P=t2 for thin shells. First we
note from (2.9) and (2.11) that t2 is given by

t2ðλÞ ¼
λ
2
Ŵ

0ðλÞþ
Z λ

λb

Ŵ
0ðsÞ

1�s3
ds: ð2:15Þ

Then expanding P=t2 to first order in δ leads to the following
approximation:

P
t2

¼ 2

λ3
δþOðδ2Þ ¼ 2

A
a

� �3

δþOðδ2Þ; ð2:16Þ

showing how the normal stress component is small compared to
the circumferential stress components. This connection is universal
and depends only on the geometrical dimensions of the shell.
Clearly, as the shell inflates, the hoop stress will be much greater
than the internal pressure.

Noting that t2 is equal to the wall tension T divided by the
deformed thickness ðB�AÞλ1, we can also recover from (2.16) the
classical membrane relation

T ¼ Pr
2
; ð2:17Þ

where r¼ a½1þOðδÞ�. This relation has often been used a priori to
model the inflation of spherical membranes including rubber
balloons [3] and biological soft tissues such as veinous and arterial
aneurysms [4]. As noted by Müller and Strehlow [5], this is directly
related to the Young–Laplace law for bubbles of fluid with surface
tension.

3. Pressure–stretch curves

By choosing a constitutive model through W, we can use the
expression (2.14) to plot the pressure–stretch curves for a thin
shell subject to inflation.

In this paper we compare the performance of two 3-parameter
phenomenological models of hyperelasticity. The first model,
arguably the first such model ever, was proposed by Mooney [6]
in 1940, as

WM ¼ C1ðλn1þλn2þλn3�3ÞþC2ðλn1λn2þλn2λ
n
3þλn3λ

n
1�3Þ; ð3:1Þ

where C140;C240;n40. Its initial shear modulus can be com-
puted from the general formula [7]: μ¼ ~W ″ð1Þ=4 where
~W ðλÞ ¼Wðλ�1

; λ;1Þ, as μM ¼ ðC1þC2Þn2=2. It covers three popular
2-parameter models for rubber: the Varga [8,9] model when n¼1,
the Mooney–Rivlin model when n¼2 and the one-term Ogden
model [2] when c2 ¼ 0. The second model is more recent: the so-
called Gent–Gent (GG) model proposed by Pucci and Saccomandi

[10] in 2002. Its strain energy function reads as

WGG ¼ �c1Jm ln 1�λ21þλ22þλ23�3
Jm

 !
þc2 ln

λ21λ
2
2þλ22λ

2
3þλ23λ

2
1

3

 !
;

ð3:2Þ

where c140; c240; Jm40, with initial shear modulus
μGG ¼ 2ðc1þc2=3Þ, independent of Jm. This model relies on the
concept of limited chain extensibility and the constant Jm acts as a
stiffening parameter: in particular an equi-biaxial deformation
such as spherical inflation is limited to the range 0oλoλm where
λm is the real root to the bicubic λ�4þ2λ2 ¼ 3þ Jm. The GG model
has been used very successfully to model the behaviour of rubber-
like materials [11]. It covers two popular 2-parameter models for
rubber, both due to Gent (hence its name): the Gent-Thomas
model [12] when Jm-1 and the Gent model [13] when c2 ¼ 0.

At first we model the pressure–stretch behaviour for an inflated
rubber balloon and we leave aside for the time being the data of
Osborne [1] for a monkey bladder subject to inflation. In the case
of rubber, the pressure–stretch curve quickly reaches a maximum
in pressure (a limit-point instability) and then it begins to decrease.
This behaviour reflects our own experience with inflating toy
balloons and is shown by Osborne's data, see Fig. 1(a). However,
when we keep inflating a balloon it eventually becomes harder to
stretch further and the pressure increases rapidly again, until
bursting point. Hence the pressure–stretch curve should have a
maximum, followed by a minimum, or in other words, it should
have two ascending branches [5]. In practice, the pressure reaches
a maximum, and then the stretch may suddenly ‘jump’ to a larger
value on the second ascending branch: this is the so-called
inflation-jump instability (Osborne's data unfortunately stop before
that point). In conclusion, we must limit the range of the para-
meters in the model to accommodate the constraints of limit-point
and inflation-jump instabilities, as dictated by the physics of
inflation.

Now we examine the theoretical pressure–stretch curves for
the Mooney material, when W ¼WM. We call PM a scaled, non-
dimensional measure of the pressure and find, using (2.14), that
here

PM � P
C1δ

¼ 2n λn�3�λ�2n�3þC2

C1
ðλ2n�3�λ�n�3Þ

� �
: ð3:3Þ

We use this equation to plot several pressure–stretch curves, for
the n¼1 (Varga), n¼2 (Mooney–Rivlin) and n¼3 models, and for
several values of C2=C1, see Fig. 2.

We see that for n¼1 and n¼3 the pressure–stretch curves
never exhibit an inflation jump and thus those models must be
discarded in the modelling of real rubber balloons. The Varga
model has a limit-point instability for all values of C2=C1; the curve

PV
PMR P3

Fig. 2. Pressure–stretch curve for the inflation of a Mooney balloon. For the n¼1 (Varga), n¼2 (Mooney–Rivlin) and n¼3 cases, the material parameter C2=C1 takes the
values 0.0, 0.1, 0.2, 0.3, as indicated by the arrows. Only the Mooney–Rivlin material (centre) can display both limit-point instability and inflation-point instability (see
dashed horizontal line when C2=C1 ¼ 0:1).

R. Mangan, M. Destrade / International Journal of Non-Linear Mechanics 68 (2015) 52–5854



for the model n¼3 exhibits asymptotic behaviour for C2=C1 ¼ 0
and is otherwise strictly increasing. We now explain why out of
these three examples only the curve for the n¼2 Mooney–Rivlin
material has two ascending branches.

To calculate the critical value ðC2=C1Þcr of the material para-
meter C2=C1 at which the first maximum in the curve ceases to
exist, we simply need to determine the stationary point of
inflection, by solving the equations

dP
dλ

¼ 0;
d2P

dλ2
¼ 0: ð3:4Þ

We find two roots for λcr, the critical value of λ, but only one of
them is real, and is given by

λcr ¼ 9�7n2�3n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5n2�9

p

ð2n�3Þðn�3Þ

" #1=3n
: ð3:5Þ

This expression is only well defined when
3
2 ono3: ð3:6Þ
Similarly, the corresponding critical value ðC2=C1Þcr is only well-
defined for n in the same range. Its general expression is

ðC2=C1Þcr

¼
ð�2n�3Þ �7n2�3n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5n2�9

p
þ9

2n2�9nþ9

 !�1=3

�ðn�3Þ �7n2�3n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5n2�9

p
þ9

2n2�9nþ9

 !2=3

ð2n�3Þ �7n2�3n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5n2�9

p
þ9

2n2�9nþ9

 !
þnþ3

:

ð3:7Þ
Within that range of possible values for n, PM-1 as λ-1,

ensuring the second ascending branch of the plot. This range
explains why the cases n¼1,3 must be disqualified for the
modelling of rubber balloons. Also, the possibility ðC2=C1Þcr ¼ 0 is
excluded from that range, which rules out the one-term Ogden
material [14]. As a check, we compute these expressions for the
Mooney–Rivlin case n¼2, and recover the values of Goriely et al.
[14]:

λcr ¼ ð19þ6
ffiffiffiffiffiffi
11

p
Þ1=6C1:84073; ðC2=C1Þcr ¼

2
ffiffiffiffiffiffi
11

p
�3

5ð19þ6
ffiffiffiffiffiffi
11

p
Þ1=3

C0:21446:

ð3:8Þ
This last quantity explains why the first three curves
C2=C1 ¼ 0:0;0:1;0:2 for n¼2 in Fig. 2 have a limit-point instability,
but the fourth one at C2=C1 ¼ 0:3 does not.

Next, we investigate the behaviour of two special cases of the
GG model. We begin with the Gent-Thomas model [12], obtained
when Jm-1, as

ŴGTðλÞ ¼ c1
1

λ4
þ2λ2�3

� �
þc2 ln

2

3λ2
þλ4

3

 !
; ð3:9Þ

and where the corresponding scaled pressure is

PGT ¼
P
c1δ

¼ 4ðλ�1�λ�7Þþ4
c2
c1

ðλ6�1Þ
λ3ðλ6þ2Þ

: ð3:10Þ

We plot the pressure–stretch curves in Fig. 3 for various values of
c2=c1. We see that it always exhibits a limit-point instability. These
curves illustrate the expected theoretical behaviour, because sol-
ving the condition for a local maximum (3.4) gives λcrC1:182 and
ðc2=c1Þcr ¼ �1:999. But this latter value is incompatible with basic
physics as it would lead to internal buckling due to loss of
ellipticity (it is a simple exercise [15] to show that strong ellipticity
for the Gent-Thomas model is equivalent to c140, c240). Hence
for all physical ratios c2=c1, the Gent-Thomas model leads to a
limit-point instability. However, its pressure clearly behaves as λ�1

as λ-1 so that it can never model a second ascending branch and
must thus be discarded as a potential model for rubber balloons.

Finally we consider the Gent model [13], which is the GG model
in the case where c2 ¼ 0. We find that the scaled pressure is

PG � P
c1δ

¼ 4
ðλ�1�λ�7ÞJm

ðJmþ3�λ�4�2λ2Þ
; ð3:11Þ

in agreement with Gent [16]. Due to the singularity at λm, there
will always be an ascending branch of the curve as λ increases.
Solving Eqs. (3.4), we find that there is a limit-point instability as
long as Jm4 ðJmÞcr, allowing for the modelling of rubber balloons;
In the range 0o Jmo ðJmÞcr, the curve has a monotonic increasing
behaviour, more appropriate for the modelling of the monkey
bladder, see Fig. 3 for examples. We find that the critical values
of the stiffening parameter and the corresponding critical stretch
are [14]

λcr ¼ ð10þ
ffiffiffiffiffiffi
93

p
Þ1=6C1:6426; ðJmÞcr ¼ 9

49 ð32þ
ffiffiffiffiffiffi
93

p
Þð10

þ
ffiffiffiffiffiffi
93

p
Þ1=3�C17:638; ð3:12Þ

respectively.

4. Curve fitting

Here we look at fitting experimental pressure–stretch data for
the inflation of a balloon to the theoretical pressure–stretch model
(2.14) for the Mooney (3.3) and the GG (3.2) strain energy density
functions.

For the inflation of rubber balloons, we favour the data from
Merritt and Weinhaus [17] over that of Osborne, because it records
the second ascending branch. We use their Fig. 1, digitised using
the Datathief [18] program. It consists of 14 data points. The initial
radius of the balloon is given as 1.9173 cm. Because the exact
thickness of the balloon used in the experiment is not known, we
take it to be that of a typical rubber balloon, 0.5 mm, so that
δC0:0261. Using the non-linear least-squares fitting routine
implemented in Maple [19], we find the values of the best-fit
parameters, as listed in Table 1. In Fig. 4, we plot the resulting
pressure–stretch curves for both models. In passing we note that
the routine used here minimises the absolute error over the whole
range of recorded stretches but that another approach, based for
instance on minimising the relative error [11], could have been
adopted.

We see that although the two curves behave similarly in the
first ascending branch (they have almost the same initial shear
modulus: μMC5:5, μGGC5:8 kPa, the GG model performs notably
better than the Mooney model at moderate to large stretches, and
is able to capture perfectly the early rise of the second ascending
branch. Its stiffening parameter JmC53:3 is compatible with other
experiments on rubber [13] and indicates a limiting stretch
λmC5:3. The stiffening parameter of the Mooney model is
nC1:97, really close to the Mooney–Rivlin model; although it is
able to capture the qualitative behaviour of an inflated rubber
balloon, it cannot give a good quantitative agreement.

From the point of view of the goodness of fit, using 3-parameter
models over 2-parameter models proved to have very little advan-
tage, and we found (not shown here) that the Gent model ðc2 � 0Þ
and the Mooney–Rivlin model ðn� 2Þ gave almost as good fits as the
GG and Mooney models, respectively. Using the software package R
[20], we verified that the p-values for c1 and Jm are practically zero
indicating that these parameters are very significant, while the p-
value for c2 is 0.3371 which suggests that this parameter is not
significant and that the Gent model (with c2 ¼ 0) is sufficient. The
same conclusion can be reached for the Mooney model as compared
to the Mooney–Rivlin model (where n¼2). However, we must recall
that from a physical point of view, the dependence of W on the
second strain invariant I2 ¼ λ21λ

2
2þλ22λ

2
3þλ23λ

2
1 is crucial to model the
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PGT

PG

Fig. 3. Left: pressure–stretch curves for the inflation of a Gent-Thomas material, for the material parameters c2=c1 ¼ 0:0;0:3;0:6;1:0 (increasing values indicated by the
arrow); right: pressure–stretch curves for the inflation of a Gent material, for the stiffening parameters Jm ¼ 90:0;60:0;40:0;15:0 (decreasing values indicated by the arrow).

Table 1
Best-fit parameters for the fitting of the Mooney and GG models to the pressure–stretch curves for the inflation of a
rubber balloon [17] (second and third rows) and a monkey bladder [1] (fourth and fifth rows).

Model Parameters

Mooney C1 ¼ 26:76 kPa C2 ¼ 1731 Pa n¼1.968
Gent–Gent c1 ¼ 27:65 kPa c2 ¼ 3851 Pa Jm¼53.33

Mooney C1 ¼ 2065 Pa C2 ¼ 74:44 Pa n¼5.03
Gent–Gent c1 ¼ 31:32 kPa c2 ¼ 0 Pa Jm¼8.127

P

P

M

GG

P
M

P
G

Fig. 4. Fitted pressure–stretch curves using the Mooney (‘PM ’) and the Gent–Gent (‘PGG ’) models for the inflation of a rubber balloon (left) and a monkey bladder. Blue curve:
experimental data from [17] and [1]. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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behaviour of rubber in modes of deformation other than inflation,
see Ogden et al. [11] and Horgan and Smayda [21]. The conclusion is
that the GG model gives the best fitting compared to the other
models for the modelling of rubber in spherical inflation.

Finally, for completeness, we look at fitting Osborne's experi-
mental data [1] for the inflation of a monkey bladder. Unlike the
rubber balloon, the pressure–stretch curve has no maximum in
the case of the monkey bladder, and exhibits instead a monotonic
increasing response. Osborne's data was recovered by scanning his
Figure 10 and digitising the curve using the Datathief [18] program.
The initial radius is given as 1.3347 cm, and we take the initial
thickness to be 2 mm so that δC0:15. Here we find that the
Mooney model with nC5 gives the best fit, while the GG model is
not able to find a best set of parameters when the constraint c2Z0
is enforced. It has to settle for the Gent model instead ðc2 ¼ 0Þ and
gives a poor fitting in the moderate stretch range. We refer to
Fig. 4 and Table 1 for more details. However, it must be kept in
mind that Osborne's data starts with a non-zero pressure, and that
it is thus not possible to locate precisely what should be the initial
point at λ¼1. Also, as noted by Osborne, the bladder tissue
exhibits ‘complex aeolotropism’ due to the presence of ‘a web of
elastic fibres with a variable amount of inextensible white fibres
intermixed’. It follows that this strong anisotropy must be taken
into account when modelling the inflation of bladder and that the
limit of the assumptions made in this paper have been reached.

Appendix A. Inflation and extension of a cylinder

Here we establish the pressure–stretch relationship for a
cylindrical shell made of an incompressible isotropic hyperelastic
material, subject to internal pressure P and constant axial stretch
λ3. The derivation is very similar to that of Section 2, see also
Ogden [2].

Let X¼XðR;Θ; ZÞ and x¼ xðr;θ; zÞ denote the position of a
material particle in the reference and current configurations,
respectively. The associated orthonormal bases are ðE1;E2;E3Þ
and ðe1; e2; e3Þ, respectively. Assuming the shell retains its cylind-
rical symmetry under deformation, the motion of a particle in the
shell can be described by

r¼ rðRÞ; θ¼Θ; z¼ λ3Z; ðA:1Þ

so that the deformation gradient, F¼ ∂x=∂X, is

F¼ diagðdr=dR; r=R; λ3Þ; ðA:2Þ

in the ðei � EjÞ basis. Hence, the principal stretches are λ1 ¼ dr=dR
(radial stretch), λ2 ¼ r=R (circumferential stretch) and λ3 ¼ constant
(axial stretch). From the incompressibility condition, det F¼ 1, we
have

dr
dR

¼ λ�1
3

R
r
: ðA:3Þ

Letting A, B and a, b denote the inner radius and outer radius of
the shell in the reference and current configurations, respectively,
and solving (A.3) leads to

λ�1
3 ðR2�A2Þ ¼ r2�a2; λ�1

3 ðR2�B2Þ ¼ r2�b2; ðA:4Þ

so that

λ�1
3 �λ2a ¼

R2

A2ðλ
�1
3 �λ2Þ ¼ B2

A2ðλ
�1
3 �λ2bÞ; ðA:5Þ

where λ� λ2 ¼ r=R, λa ¼ a=A and λb ¼ b=B.
Due to the symmetry of the problem, the only non-zero

components of the Cauchy stress tensor T are t1 ¼ T11 (radial
stress), t2 ¼ T22 (hoop stress) and t3 ¼ T33 (axial stress). From the

equilibrium equation, div T¼ 0, we have

dt1
dr

¼ 1
r
ðt2�t1Þ; ðA:6Þ

where t1 ¼ λ1∂W=∂λ1�p, t2 ¼ λ2∂W=∂λ2�p, and p is a Lagrange
multiplier due to the constraint of incompressibility. Next, intro-
ducing the auxiliary function Ŵ ðλ; λ3Þ ¼Wðλ�1λ�1

3 ;λ; λ3Þ and
using the chain rule, we find

∂Ŵ
∂λ

¼ λ�1ðt2�t1Þ: ðA:7Þ

Hence, according to (A.6), we have

dt1
dr

¼ dλ
dr

dt1
dλ

¼ λ
r
∂Ŵ
∂λ

: ðA:8Þ

Because λ¼ r=R and R¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ3A

2þλ3r2�a2
q

, we find that

dλ
dr

¼ 1
R
ð1�λ2λ3Þ: ðA:9Þ

Hence, from (A.8) and (A.9), we deduce the expression

dt1
dλ

¼ ∂Ŵ
∂λ

1

1�λ2λ3
: ðA:10Þ

Integrating (A.10) and imposing the boundary conditions
t1ðλaÞ ¼ �P and t1ðλbÞ ¼ 0, we find that

t1ðλÞ ¼
Z λ

λb

1
1�s2λ3

∂Ŵ
∂s

ds and P ¼
Z λb

λa

1

1�λ2λ3

∂Ŵ
∂λ

dλ; ðA:11Þ

where s is a dummy variable. Expanding P in the thickness
parameter δ¼ ðB�AÞ=A leads to

P ¼ 1
λλ3

∂Ŵ
∂λ

δ� 1

2λ3λ23
λ3λ3

∂2Ŵ

∂λ2
�λ

∂2Ŵ

∂λ2
þ∂Ŵ

∂λ

" #
δ2þOðδ3Þ; ðA:12Þ

where λ¼ λa½1þOðδÞ�.
Next we set λ3 ¼ 1, so that the cylinder is deforming in the

radial direction only. Determining t2 using (A.6) and (A.11), and
expanding P=t2 to first order in δ leads to the following approx-
imation for thin shells:

P
t2

¼ 1

λ2
δ: ðA:13Þ

Because t2 is equal to the wall tension T divided by the deformed
ðB�AÞλ1, we can recover from (A.13) the classical membrane
relation

T ¼ Pr; ðA:14Þ
where r¼ a½1þOðδÞ�. This is the pendant formula to (2.17) for
cylinders [4].
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