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Abstract. The possibility of having finite–amplitude inhomogeneous plane waves propa-
gating in a compressible hyperelastic isotropic material maintained in a state of arbitrary
finite static homogeneous deformation is investigated.

The material considered belongs to a special class of Blatz-Ko materials, describing the
behaviour of a certain solid polyurethane elastomer. The waves are of complex exponential
type and are linearly–polarized in a direction orthogonal to both the direction of propagation
and the direction of attenuation.

The propagation of energy is considered, and well–known results established in the lin-
earized theory are recovered, despite the nonlinearity of the motion.

As by–products of the study, new static inhomogeneous solutions are found.
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1 INTRODUCTION

The Blatz–Ko models for polyurethane rubber have been extensively used to describe the
behaviour of compressible hyperelastic isotropic materials undergoing finite deformations.
Good agreement with experiments has been obtained in many measurements.1 Their
elastic response functions depend only on det F, where F is the deformation gradient.

The experimental and theoretical bases for these models have been laid down by Blatz &
Ko1 and later further justified by Beatty & Stalnaker2 and Knowles & Sternberg.3 In these
papers, two subclasses of Blatz–Ko materials were derived, namely the ‘Blatz–Ko foamed,
polyurethane elastomer’ and the ‘Blatz–Ko solid, polyurethane rubber’. For the foamed
Blatz–Ko material, the strain–energy function is independent of I = tr B , whilst for the
solid Blatz–Ko material, it is independent of II = [(tr B )2 − tr B 2 ]/2, where B = FF

T

is the left Cauchy–Green strain tensor. Following the works of Knowles & Sternberg,3–5

Horgan6 recently proved that the model for the Blatz–Ko solid, polyurethane rubber was
the only one of the general Blatz–Ko class for which ellipticity was to hold when arbitrary
large three–dimensional stretches were applied to the material.

Carroll7 proved that circularly–polarized finite–amplitude plane waves may propagate in
a biaxially deformed homogeneous isotropic compressible material. Later, Boulanger,
Hayes & Trimarco8 extensively studied similar waves in a triaxially deformed Hadamard
material. Lately, vibrations and stability of finitely deformed compressible materials have
received attention from various authors (see Roxburgh & Ogden,9 Vandyke & Wineman,10

Akyuz & Ertepinar11). However, these articles either deal with homogeneous plane waves
or are placed within the framework of small deformations superimposed on large .

In the present paper, we study the propagation of inhomogeneous waves, in particu-
lar linearly–polarized transverse finite–amplitude inhomogeneous plane waves in a solid
Blatz–Ko material, when it is maintained in a state of static homogeneous deformation.

The form of the paper is as follows. In Section 2, we recall how the solid Blatz–Ko material
is defined. We assume that this material is first maintained in a state of homogeneous
deformation and then, that a finite motion of complex exponential type is superposed.

Although linearly–polarized transverse finite–amplitude inhomogeneous plane waves may
not propagate in a general compressible material in the absence of body forces,12 we
show in Section 3 that such motions are possible for the class of solid Blatz–Ko materials,
provided that the directions of the normals to the planes of constant phase and of constant
amplitude are conjugate with respect to the ellipsoid x.Bx = 1, where B is the left Cauchy–
Green strain tensor corresponding to the primary homogeneous deformation.

In Section 4, the propagation of the energy carried by the waves is considered. Despite
the non–linearity introduced by the finite magnitude of the waves, we recover energetics
results established earlier in the linearized theory. If p and q are unit normals to the
planes of constant amplitude and of constant phase, respectively, then we prove, inter–
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alia, that Ř.p = 0 and Ř.q = vĚ. Here, Ř and Ě are the respective time averages of the
energy flux vector and total energy and v is the speed of propagation of the wave.

Also of interest is the question of possible static finite deformations of the Blatz–Ko mate-
rial. Ever since Ericksen13 proved that only homogeneous deformations were possible for
every compressible, isotropic, elastic solid (in the absence of body forces), inhomogeneous
deformations have been sought for restricted classes of compressible materials. The inter-
est of such non–universal solutions was emphasized by Currie & Hayes.14 However, with
regard to finite deformations possible for a solid Blatz–Ko material, few solutions have
been proposed. We cite the works of Knowles15 for anti–plane shear (see also Agarwal,16

Erterpinar & Eraslanoglu,17 Poliglone & Horgan18). In Section 5, we find new exact static
solutions by letting the speed of propagation of the finite–amplitude inhomogeneous wave
tend to zero. This means that a deformation consisting of a finite static exponential type
displacement, superposed upon a finite static triaxial stretch is possible for the Blatz–Ko
solid, polyurethane rubber, in the absence of body forces.

2 BASIC EQUATIONS

2.1 Primary static deformation

For a solid Blatz–Ko material, undergoing a deformation characterized by a deformation
gradient F, the strain–energy function Σ is given by

Σ = µ(tr FFT − 3)/2 + κf(J). (1)

Here, J = det F, µ and κ are constants (the shear and bulk moduli for infinitesimal
deformations) and f a function of J alone. Extensive discussions on the validity of this
model and explicit expressions for f can be found in,1, 2 for instance. Note also that
Chadwick & Jarvis19 refer to materials with energy function given by (1) as ‘restricted
Hadamard materials’, because the corresponding expression for a Hadamard material is:20

Σ = µ(tr B − 3)/2 − ν[(tr B )2 − (tr B 2)]/2 + κf(J), where B = FF
T , and ν is a constant.

From (1) follows that for solid Blatz–Ko materials, the Cauchy stress tensor T is given by

T = κf ′(J)1 + µJ−1
B . (2)

Suppose that the material is first subjected to a pure homogeneous static deformation,
with extension ratios λ1, λ2, and λ3 along the principal directions given by the orthogonal
unit vectors e1, e2, and e3, respectively. Thus, a material particle initially at position
X = Xiei has moved to the position x = xiei where xi = λiXi (no sum), in the static
state of pure homogeneous deformation. The corresponding deformation gradient F and
left Cauchy–Green strain tensor B are given by

F = diag (λ1, λ2, λ3), B = diag (λ2
1, λ

2
2, λ

2
3), with J = det F = λ1λ2λ3. (3)
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2.2 Superposed deformation

We now superpose a linearly–polarized inhomogeneous plane wave of finite amplitude
upon the large static deformation. Let a be a unit vector in the direction of polarization.
We assume that a particle at x in the intermediate static state has moved to x such that

x = x + α{eiω(S.x−t) + c.c.}a = x + 2αe−ωS−.x cos ω(S+.x − t)a. (4)

Here, α is a finite real scalar, S = S+ + iS− is a complex vector, called the ‘slowness
bivector’,21 ω is the real frequency and ‘c.c.’ denotes the complex conjugate. The planes
defined by S+.x = const. are the planes of constant phase and those defined by S−.x =
const. are the planes of constant amplitude.

We seek linearly–polarized plane wave solutions to the equations of motion which are
‘transverse’, in the sense that the direction of polarization is orthogonal to both directions
of propagation and of attenuation, i. e. a.S = 0.

The deformation gradient F associated with the motion (4) is given by

F = ∂x/∂X = F̃ F, where F̃ = 1 + αa ⊗ {iωeiω(S.x−t)S + c.c.}. (5)

The corresponding left Cauchy–Green tensor is B given by B = F F
T

= F̃ B F̃
T .

Using a.S = 0 and (5), we find that the determinants J̃ of F̃ and J of F are given by

J̃ = 1, and J = J̃ J = J = λ1λ2λ3. (6)

Hence, the Cauchy stress T associated with the motion (4) is given by

T = κf ′(J)1 + µJ−1
B = κf ′(J)1 + µJ−1

F̃ B F̃
T . (7)

3 PROPAGATING SOLUTIONS

3.1 Equations of motion

In the absence of body forces, the equations of motion read

divT = ρ
∂2x

∂t2
,

∂Tij

∂xj

= ρ
∂2xi

∂t2
. (8)

Here ρ is the mass density per unit volume of the solid Blatz–Ko material, measured in the
current state of static deformation. It is related to ρ0, the mass density per unit volume
of the body in its undeformed state, through ρ = J−1ρ0. Upon using the divergence
theorem, we can easily prove that (8) is equivalent to

div (J̃ TF̃
−T) = ρJ̃

∂2x

∂t2
,

∂(J̃ TF̃
−T)ij

∂xj

= ρJ̃
∂2xi

∂t2
(9)

With (6), (7), and the equation ∂(J̃ F̃
−T
ij )/∂xj = 0, the equations of motion reduce to

µ{(S.BS)eiω(S.x−t) + c.c.}a = ρ0{eiω(S.x−t) + c.c.}a. (10)
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3.2 Propagating evanescent waves

From equation (10) we deduce the following propagation condition,

S.BS = c−2
0 , with c0 =

√
µ/ρ0. (11)

Hence, S.BS is real, which is equivalent to S+.BS− = 0. In other words, the directions of
the normal to the planes of constant phase and of the normal to the planes of constant
amplitude are conjugate with respect to the B –ellipsoid.

We now solve the propagation condition. For homogeneous waves with displacement in
the form {ei(k.x−vt)+c.c.}a where k is a real vector, the direction of propagation (direction
of k) is chosen and the wave speed v and polarization direction (direction of a) are then
found by solving an eigenvalue problem. For inhomogeneous waves, the direction of
propagation (that of S+) does not coincide with the direction of attenuation (that of S−),
so that it is actually the plane containing these two directions (the plane of the ellipse of
the bivector S) which is typically prescribed. Solving the equations of motion then yields
a, S+ and S− which gives the directions of polarization, propagation and attenuation, the
angle between the planes of constant phase and of constant amplitude, the wave speed
(| S+ |−1) and attenuation factor (ω | S− |) . This can be done by using the ‘Directional
Ellipse Method’ introduced by Hayes.21

The Directional Ellipse of S is by definition the ellipse similar and similarly situated to
the ellipse of S whose minor semi–axis is of unit length. Thus, calling m (m ≥ 1) the
length of the major semi–axis, this ellipse is that of the bivector C defined by

C = mm̂ + in̂, (12)

where m̂ and n̂ are orthogonal unit vectors along the semi–axes of the ellipse of S. The
bivector S may now be written as

S = NC, N = Teiφ, (13)

where N is a complex number of modulus T and argument φ.

Once C is prescribed, knowledge of T and φ gives all the information needed about the
wave. Indeed, we have,21{

S+ = T (m cos φm̂− sin φn̂), | S+ |= T
√

m2 cos2 φ + sin2 φ,

S− = T (m sin φm̂ + cos φn̂), | S− |= T
√

m2 sin2 φ + cos2 φ.
(14)

The angle between the planes of constant phase and of constant amplitude is θ, given by

tan θ = 2m/[(m2 − 1) sin 2φ]. (15)

The wave is linearly–polarized along a = m̂ × n̂.
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In our case, we have, according to (11),

N−2 = T−2e−2iφ = c2
0C.BC. (16)

Note that N becomes infinite when C.BC = 0. This case will be considered later (see
Section 5). Provided that C.BC 6= 0, then T and φ are given by{

T−2 = c2
0

√
(m2m̂.B m̂ − n̂.B n̂)2 + 4m2(m̂.B n̂)2,

tan 2φ = −2m(m̂.B n̂)/(m2m̂.B m̂ − n̂.B n̂).
(17)

For illustrative purposes, we construct the following example. We let λ1 = 1, λ2 =
√

2
and λ3 =

√
3, so that B = diag (1, 2, 3), and we prescribe C = mm̂ + in̂ as follows:

m = (1 +
√

3)/2, m̂ = (−e1 + e2)/
√

2, n̂ = (e1 + e2 + e3)/
√

3. (18)

With this choice, T and φ are given by T 2 = c2
0

√
3/(4 + 4

√
3), and φ = 5π/12.

Therefore, the following motion is possible for a solid Blatz–Ko material:

x = x + 2αae−ωS−.x cos ω(S+.x − t), where x = diag (1,
√

2,
√

3)X. (19)

This wave is linearly–polarized along a, given by

a = (e1 − 2e2 + e3)/
√

3. (20)

It propagates in the direction of S+, with speed v =| S+ |−1, given by

S+ = −c−1
0 (1 − 1/

√
3)1/2[(1 + 2

√
3)e1 + (1 +

√
3)e2 + e3]/8, v = 4c0/

√
3. (21)

It is attenuated in the direction of S−, with attenuation factor σ = ω | S− |, given by

S− = −c−1
0 (1 − 1/

√
3)1/2[(4 +

√
3)e1 + (1 −

√
3)e2 − (2 + 3

√
3)e3]/8, σ = 3ω/(4c0).

(22)

Finally, the angle between the planes of constant phase and amplitude is θ, such that
tan θ = −2

√
2.

3.3 Bounds for the velocity

We recall the propagation condition,

S+.BS+ − S−.BS−− = ρ0/µ. (23)

We now introduce the speed of propagation v for the finite–amplitude plane wave, defined
by v =| S+ |−1, and the unit vector p in the direction of propagation, defined by p =
S+/ | S+ |. Dividing (23) by S+.S+ yields

ρ0v
2 = µ(p.Bp − v2S−.BS−),
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or

ρ0v
2 = µ

p.Bp

1 + (µ/ρ0)S−.BS− , (24)

The numerator of the fraction in (24) is bounded bellow by λ2
1 (propagation in the direction

of least stretch) and above by λ2
3 (propagation in the direction of greatest stretch), whilst

the denominator is bounded bellow by 1 (when | S− |→ 0, and the wave is homogeneous),
and not bounded above (when | S− |→ ∞, and the amplitude of the wave tends to zero).

We conclude that the greatest velocity for the finite–amplitude plane wave of exponential
type is vmax, given by

ρ0v
2
max = µλ2

3,

and it is attained when the wave propagates with no attenuation, in the direction of
greatest stretch. This result was first established by Hayes [QJMAM 1968] for small–
amplitude homogeneous plane waves propagating in a deformed restricted Hadamard
material. Hayes also proved that waves of this type travel with the least speed cmin in the
direction of least stretch, with cmin given by ρ0c

2
min = µλ2

1. In contrast with homogeneous
waves, we see that inhomogeneous waves have a lower bound vmin given by

ρ0v
2
min = 0.

We will show in Section 5 how it is possible to construct such finite inhomogeneous static
deformations.

4 ENERGY PROPAGATION

Now, we consider the energy carried by the waves. We introduce two energy quantities,
the total energy density, sum of the kinetic and stored–energy densities, and the energy
flux vector, which measures the flux of energy crossing a unit surface per unit time.

Following the works of Schouten23 and Synge,24 Hayes25 showed that for an inhomogeneous
plane wave with slowness bivector S = S+ + iS−, we have Ř.S− = 0 and Ř.S+ = Ě,
where Ř and Ě are the temporal mean values of the energy flux vector and total energy
density carried by the wave, respectively. This result holds for any linear conservative
system, whether or not the medium is anisotropic or subject to an internal constraint,
such as incompressibility or inextensibility.

The above mentioned papers are situated within the linearized theory. Here, we find
similar results in the non–linear case of a finite–amplitude wave propagating in a finitely
deformed solid Blatz–Ko material.
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We introduce the following notation to denote temporal mean values: if D(x, t) is a
periodic field quantity with frequency ω, then its mean value is Ď defined by

Ď =
ω

2π

∫ ω
2π

0

D(x, t)dt. (25)

We begin with the kinetic energy density per unit volume K, measured in the current
configuration,

K = ρ(ẋ.ẋ)/2. (26)

The velocity ẋ is derived by differentiating (4) with respect to time t, so that

K = −ρα2ω2{e2iω(S.x−t) + c.c.}/2 + ρα2ω2e−2ωS−.x, (27)

and the mean kinetic energy density Ǩ is

Ǩ = ρα2ω2e−2ωS−.x = ρ0J
−1α2ω2e−2ωS−.x. (28)

According to (11), we may rewrite this last equality as

Ǩ = µJ−1α2ω2 (S.BS)e−2ωS− .x. (29)

The stored–energy density W associated with the wave, and measured per unit volume
in the reference configuration, is defined by

W = Σ − Σ = µ(I − I)/2 + κ[f(J) − f(J)], (30)

where Σ and Σ are the strain–energy functions corresponding to the static deformation
xi = λiXi (no sum) and to the motion (4), respectively.

In (30), I and I are the respective first principal invariants of B and B . Taking the trace

of B = F̃ B F̃
T , yields

I = I − α2ω2{(S.BS)e2iω(S.x−t) + c.c.} + 2α2ω2(S.BS∗)e−2ωS−.x, (31)

where S∗ = S+ − iS−. Using (31) and also (6), we write the mean value W̌ of the
stored–energy density as

W̌ = µ α2ω2(S.BS∗)e−2ωS−.x. (32)

We are now able to compute the total energy density E, in the current configuration, as:
E = K + J−1W . Using (29) and (32), we can write directly the mean value of E as

Ě = 2µJ−1α2ω2(S.BS+)e−2ωS−.x. (33)
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Now we turn our attention to the energy flux vector, R (say). By definition it is such that
its component R.p (where p is a unit vector) is equal to the rate at which the total energy
E crosses, at current time, unit area of surface having outward normal p in the final state
of deformation. In the context of elasticity, R = −T.ẋ. It is related to the energy flux
vector R (say), measured in the intermediate static state of deformation through22

R = J̃ F̃
−1R = −F̃ −1

T.ẋ = α{iωeiω(S.x−t) + c.c.}F̃ −1
Ta. (34)

It is found that R is given by

R = α{iωeiω(S.x−t) + c.c.}[Ta + µJ−1α{iωeiω(S.x−t)
BS + c.c.}]. (35)

The temporal mean value Ř of the energy flux vector R is therefore

Ř = 2µJ−1α2ω2e−2ωS−.x
BS+ . (36)

Hence, using equation (33), we see that Ř.S = Ě.

From this last equation we conclude first that

Ř.S− = 0, or Ř.p = 0, (37)

where p is the unit normal to the planes of constant amplitude, and second that

Ř.S+ = Ě, or Ř.q = vĚ (38)

where q is the unit normal to the planes of constant phase and v is the speed of the wave,
given by v =| S+ |−1.

5 STATIC EXPONENTIAL SOLUTIONS

Finally, we exploit an interesting feature of complex exponential solutions. For propagat-
ing solutions, the displacement is the real part of the complex quantity αaeiωN(C.x−N−1t).
However, because C may be arbitrarily prescribed, it may happen that for certain choices,
N−1 = 0, thus removing the time dependence of the solution. The product ωN = k(say)
may nevertheless remain finite and the static deformation αa{eikC.x +c.c.} may be super-
imposed upon the pure homogeneous deformation. Hence, exact solutions to the equations
of motion are found. Such solutions have been called ‘Static Exponential Solutions’ (SES)
by Boulanger & Hayes -.26

In our context, we mentioned in Section 3.2 that for certain choices of C, N−1 is equal to
zero. This case arises when the bivector C = mm̂ + in̂ is prescribed to be such that

C.BC = 0, or m2m̂B m̂ − n̂B n̂ = m̂B n̂ = 0, (39)
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which means that the ellipse of C is similar and similarly situated to the elliptical section
of the B –ellipsoid by the plane of C.27 Note that there is an infinity of such bivectors C.

In conclusion, we have proved that the deformation transporting a material point from
X = Xiei to the position x, given by

x = x + 2αae−kn̂.x cos mk(m̂.x), (40)

where xi = λiXi (no sum), is possible for a solid Blatz–Ko material, in the absence of
body forces. In (40), the real number m and the two orthogonal unit vectors m̂, n̂ are such
that m2m̂B m̂ − n̂B n̂ = m̂B n̂ = 0, α and k are arbitrary real numbers, and a = m̂ × n̂.

As an example, we consider the simple case where m̂ is in a principal plane (m̂ = cos φ e1+
sin φ e3), and n̂ in a principal direction (n̂ = e2). By choosing m as follows,

m2 = λ2
2/(λ2

1 cos2 φ + λ2
3 sin2 φ), (41)

we can construct an inhomogeneous deformation of a solid Blatz-Ko material, which may
be written as 

x = λ1X − 2α sin φ e−kλ2Y cos mk(λ1X cos φ + λ3Z sin φ),
y = λ2Y,
z = λ3Z + 2α cos φ e−kλ2Y cos mk(λ1X cos φ + λ3Z sin φ),

(42)

where k is arbitrary and m is given by (41).
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