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Summary The derivation of secular equations in closed form for acoustic waves propagating at the interface of semi-infinite elastic
bodies is made possible, using a simple method.

INTRODUCTION

Consider an inhomogeneous plane wave propagating in a semi-infinite anisotropic elastic solid with speed v and wave
number £ in the direction x; (say), and with attenuation in the direction 2 (say), orthogonal to z;. Its mechanical
displacement is modeled as

u = U(kzy)e* @17 U(oco) = 0.

Anisotropic stress-strain relations, 0;; = ¢;;5111,; Where c is a constant fourth-order elasticity tensor, imply that the stress
components are of the form,
05 = iktij(k‘l‘Q)elk(wl_vt), tij(oo) =0.

The equations of motion can be written as a first-order differential system for the components of the displacement-traction
vector &,
£I = ZNf, where E(k:l:g) = [Ul,UQ,U3,t12,t22,t32]T. (l)

Here N is a real 6 x 6 matrix, whose components depend on the elastic constants and mass density characteristic of the
material, and on the speed v. Finally, some boundary conditions are imposed at the interface x5 = 0 for some (or all)
components of £(0),

f(Ui(0),t:2(0)) = 0, 2)

such as for instance the vanishing of the tractions for a solid/vacuum interface (Rayleigh waves) or the continuity of the
displacements and of the tractions for a solid/solid interface (Stoneley waves).

The usual method of resolution of (1)-(2) consists in the following steps. First take the solution to (1) in exponential
form, &(kz2) = &€%e*P22. Then find the attenuation factors p; as roots of: det (N — pI) = 0, S(p) > 0, and the partial
waves &7 as eigenvectors of: N&7 = p;€7. Finally use the general solution & (kx2) = 3 v;€7€#Pi®2 | to write (2): then a
homogeneous system of equations with unknowns y; arises, and the corresponding determinantal equation is the secular
equation, with v as the sole unknown. This approach was introduced by Stroh [1] and later used by Barnett & Lothe and
others to address and answer many outstanding theoretical questions about the existence and uniqueness of a solution,
bounds on the wave speed, etc. Moreover, Barnett & Lothe [2] also developped an “integral formalism” which yields
efficient numerical schemes for the determination of the wave speed without having to compute the p;. However this
method is not appropriate in general to derive a secular equation explicitly. Indeed, only when the wave is polarized in
the sagittal plane and certain elastic constants vanish can the p; (and thus the secular equation) be found explicitly, as the
roots of a biquadratic (Royer & Dieulesaint [3] identified the corresponding 16 configurations for solids with rhombic,
tetragonal, cubic, and hexagonal symmetries.) Otherwise, the equation det (N — pI) = 0 is a bicubic, a quartic, or even a
sextic for p, leading to an involved analysis in the first and second cases, or to an unsolvable problem in the latter case.
Hence a different procedure must be adopted. This search was initiated by Currie [4] and completed by Taziev [5] for
Rayleigh waves, using some results of the Stroh formalism. Here a generalization is proposed for this and other types of
interface waves (Stoneley waves, Scholte waves), without relying on the Stroh formalism.

FUNDAMENTAL EQUATIONS

The properties of the matrix IN in (1) are well established. In particular, it can be checked that TN”, where T is defined
below and n is an integer, is a symmetric matrix with the following block structure,

- m w7 ~ -
IN" = (R e | = @7 Ti= [O I} '
Nln N2n I 0

Here, K™ and N(zn) are symmetric 3 x 3 matrices, and I is the 3 x 3 identity matrix. Thus, multiplying both sides of (1)
by IN"€ and adding the complex conjugate yields € - IN"¢’ + € - IN™¢ = 0, and so by integration, € - IN"¢ = const.
= 0, its value at infinity. In particular, R

£(0) - IN"£(0) = 0. 3



These fundamental equations, valid for any positive or negative values of the integer n, are sufficient to solve many
problems of interface waves. Because of the Cayley-Hamilton theorem, if N is a 6 x 6 matrix then there are 5 independent
fundamental equations, and if N is a 4 x 4 matrix (decoupling of in-plane from anti-plane strain and stress) then there are
3 independent equations. Examples solved so far are now briefly presented.

EXAMPLES

Rayleigh waves
For a solid/vacuum interface, the boundary conditions at 2o = 0 are: £(0) = [U(0), 0], and (3) reduce to [4,5],

T(0)- K™U(0) = 0. “)

Then the secular equation is found explicitly for a completely arbitrary direction of propagation. Moreover, when the
wave travels along a crystallographic axis of a rhombic crystal or along a principal direction of a pre-stressed hyperelastic
material, then the body can be put into uniform rotation (gyroscopes, tires, ... ) along one of the crystallographic/principal
axes and the secular equation can also be found [6] (see Fig. 1(a)) ; in that case K™ is Hermitian and (4) still applies.

Figure 1. (a) Rayleigh wave in a rotating body; (b) Scholte wave polarized in a plane of symmetry.

Scholte waves

For a solid/fluid interface, the boundary conditions at z; = 0 are: £(07) = [U;(07),Us(07),Us(07),0,222(0),0]"
in the solid and: #22(07) = —i1ZU(07) in the fluid, where Z is the (real) normal impedance of the inviscid fluid. The
continuity of Us and t99 accross the interface, combined with (3), yield the secular equation for waves either polarized in
a symmetry plane [7] (see Fig. 1(b)) or propagating in a symmetry plane.

Stoneley waves

For a solid/solid interface, the boundary conditions at 5 = 0 are: £(0%) = £(07). The fundamental equations (3) yield
the secular equation when the semi-infinite bodies are made of same crystal [8] (see Fig. 2) , or of the same hyperelastic
material subject to the same pre-stress [9], but with misaligned crystallographic/principal axes.
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Figure 2. Cutting, rotating, and bonding of a rhombic crystal; a Stoneley wave exists at 2 = 0.
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