
May 1, 2006 12:58 Proceedings Trim Size: 9in x 6in wascom4

WAVES AND VIBRATIONS

IN A SOLID OF SECOND GRADE

M. DESTRADE

Laboratoire de Modélisation en Mécanique (UMR 7607),
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We study the viscoelastic second grade solid, for which the constitutive equation

consists in the sum of a purely elastic part and a viscoelastic part; this latter part

is specified by two microstructural coefficients α1 and α2, in addition to the usual

Newtonian viscosity ν. We show via some exact solutions that such solids may

describe some interesting dispersive effects. The solutions under investigation be-

long to special classes of standing waves and of circularly-polarized finite-amplitude

waves.

1. Introduction

Fosdick and Yu1 studied the thermodynamics and the non-linear oscilla-

tions of a special class of of viscoelastic solids of differential type where the

rate effects are characterized by two microstructural coefficients α1 and α2,

in addition to the usual Newtonian viscosity ν. This is a most promising

model, which generalizes the usual dissipative solid used in many appli-

cations (for example in non-linear acoustics2) and which introduces more

than one characteristic time or speed. This model is the solid-mechanic

analogue of the much-discussed second grade fluid and for this reason it

has been dubbed “the solid of second grade”. Here we point out some

important dynamic features of this solid by considering some simple, finite-

1
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amplitude, motions.

In Section 3, we record some unexpected behaviors for the incompress-

ible Mooney-Rivlin solid of second grade, for which the elastic part of the

Cauchy stress tensor is linear in the first two invariants of the Cauchy-Green

tensor. We use a finite-amplitude, rectilinear shear motion to study the in-

fluence of rate effects on some classical problems. First, we find that the

creep and recovery experiments will undergo some time-dependent oscilla-

tions if those effects are strong enough (in the corresponding purely elastic

case, creep and recovery have exponential time dependence.) Second, we

describe a slab with one face fixed and the other oscillating: we find that,

above a certain threshold, the rate effects will cause the amplitude of the

resulting oscillations within the slab to be rapidly (exponentially) attenu-

ated with distance from the moving plate, even when there is no Newto-

nian viscosity (in the corresponding purely elastic case, the oscillations are

transmitted sinusoidally through the slab.) We argue that these effects are

intimately linked to the microstructure of the solid via the parameter α1,

and that they are symptomatic of the behavior of solids of second grade in

general and are not restricted to these two particular problems, nor to the

specialization to the Mooney-Rivlin model.

This point is further pressed in Section 4, where we make a connec-

tion with the results of a previous article, for finite-amplitude, elliptically

polarized, transverse plane waves. We find that the nature of generalized

oscillatory shearing motions3 might not change with the introduction of

second grade effects, but that the nature of sinusoidal standing waves is

affected at high frequencies.

2. Basic equations

As is conventional in continuum mechanics, the motion of a body is de-

scribed here by a relation x = x(X, t), where x denotes the current co-

ordinates at time t of a point occupied by the particle of coordinates X

in the reference configuration. The deformation gradient F(X, t) and the

spatial velocity gradient L(X, t) associated with the motion are defined by

F := ∂x/∂X and L := grad ẋ, respectively (here the dot denotes the ma-

terial derivative, see Chadwick4 for instance). The other geometrical and

kinematical quantities of interest are the left Cauchy-Green strain tensor

B := FFT and the first two Rivlin-Ericksen tensors A1 := L + LT and

A2 := Ȧ1 + A1L + LTA1.

In this article we restrict our attention to incompressible materials so
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that only isochoric motions are possible; hence in particular, det B = 1 and

tr D = 0 at all times.

Further, we consider incompressible materials with a special constitutive

equation1, for which the Cauchy stress T is split in an additive manner

into an elastic part TE and a dissipative part TD. For the elastic part,

the constitutive equation is that of a general hyperelastic, incompressible,

isotropic material, that is4

TE = −p1 + 2
∂Σ

∂I1
B− 2

∂Σ

∂I2
B−1, (1)

where 1 is the unit tensor and p = p(x, t) is the arbitrary Lagrange mul-

tiplier associated with the constraint of incompressibility and is usually

called the pressure. In Eq. (1), Σ is the strain energy function, which for

an incompressible material depends on I1 and I2, the first two principal

invariants of B: I1 := tr B, I2 := [I21 − tr (B2)]/2. The dissipative part is

given by

TD = νA1 + α1A2 + α2A
2
1, (2)

where ν is the usual classical Newtonian viscosity and α1, α2 are the mi-

crostructural coefficients. The total Cauchy stress is the sum of these two

parts, namely

T = −p1 + 2
∂Σ

∂I1
B− 2

∂Σ

∂I2
B−1 + νA1 + α1A2 + α2A

2
1. (3)

Note that for the Mooney-Rivlin model of rubber elasticity, for which

2Σ = C(I1 − 3) + E(I2 − 3), where C and E are material constants, the

total stress specializes to

T = −p1 + CB− EB−1 + νA1 + α1A2 + α2A
2
1. (4)

For materials which such a constitutive equation, Hayes and Saccomandi5

studied the propagation of finite amplitude transverse waves superimposed

onto an arbitrary homogeneous static deformation.

3. On the nature of the microstructural parameter α1

Fosdick and Yu1 showed that the compatibility of the material model Eq. (3)

with the laws of thermodynamics requires that α1 + α2 = 0, and that the

Newtonian viscosity ν is non-negative. Moreover, they showed that the

Helmholtz free energy function of the second grade solid is a minimum at

equilibrium if and only if α1 ≥ 0. Another interesting and important result

of their investigation is a remark about the evolution in time of E(t), the
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canonical energy of a body mechanically isolated and contained in a region

Ωt free of tractions. The canonical energy is the sum of the Helmholtz free

energy and the kinetic energy and so it is defined by

E(t) :=

∫

Ωt

(

Σ+ 1
4α1A1 ·A1

)

dv +

∫

Ωt

1
2ρẋ · ẋdv, (5)

(where ρ is the mass density). Fosdick and Yu showed that its time evolu-

tion is given by

Ė = −ν
2

∫

Ωt

(A1 ·A1) dv, (6)

which means that the canonical energy decreases with time. This latter

equation also shows that α1 does not contribute to dissipation. This is a

central point in our discussion.

Now the aim of this Section is to elaborate further on the parameter

α1 and to show that it is genuinely connected with the microstructure of

the material (precisely, with a characteristic length). To this end we try

to maintain algebraic complexity at the lower level and so we study the

following simple rectilinear shear motion,

x(X, t) = [X + u(Y, t)] e1 + Y e2 + Ze3, (7)

where u is a yet unknown function and e1, e2, e3 form a fixed orthonormal

triad.

For this isochoric motion, the kinematical quantities of interest are

B = 1 + u2Y e1 ⊗ e1 + uY (e1 ⊗ e2 + e2 ⊗ e1),

B−1 = 1 + u2Y e2 ⊗ e2 − uY (e1 ⊗ e2 + e2 ⊗ e1),

A1 = uY t(e1 ⊗ e2 + e2 ⊗ e1),

A2 = uY tt(e1 ⊗ e2 + e2 ⊗ e1) + 2u2Y te2 ⊗ e2,

A2
1 = u2Y t(e1 ⊗ e1 + e2 ⊗ e2), (8)

and the first two principal invariants are equal: I1 = I2 = 3 + u2Y .

The equations of motions, in the absence of body forces, are: div T = ρẍ

in current form. Writing them in referential form, and using Eqs. (8) which,

together with Eq. (3), show that the non-diagonal elements of T depend

on Y and t only, we find that they reduce to

− ∂p

∂X
+
∂T12
∂Y

= ρutt,
∂T22
∂Y

= 0, − ∂p
∂Z

= 0. (9)

According to the third of these equations, p = p(X,Y, t). Then, by differ-

entiation of the first and second equations in Eqs. (9) with respect to X, we
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find that pXX = pY X = 0, so that pX = p1(t), say. Finally, the first equa-

tion in Eqs. (9) is the determining equation for the shearing deformation,

given by

−p1(t) + (QuY )Y + νuY Y t + α1uY Y tt = ρutt, (10)

where Q = Q(u2Y ) = 2(∂Σ/∂I1+∂Σ/∂I2) is the generalized shear modulus3.

To simplify further the computations in the remainder of this Section, we

take the scalar p1(t) to be identically zero (p1 ≡ 0), and the constitutive

equation of the material to be Eq. (4). In that case, Q = const. = µ, where

µ = C + E is the infinitesimal shear modulus of Mooney-Rivlin materials,

and the determining equation Eq. (10) simplifies to

µuY Y + νuY Y t + α1uY Y tt = ρutt. (11)

We notice that this partial differential equation is exactly the same equation

as that obtained by Rubin et al.6 in the linear limit of the phenomenological

theory of dispersion caused by an inherent material characteristic length;

it also occurs in the framework of acoustic waves propagation in bubbly

liquids7. If in Eq. (11) L is a characteristic length and T a characteristic

time, then we may exhibit three dimensionless numbers: π1 = ν/(µT ),

π2 = α1/(µT
2) and π3 = ρL/(µT 2).

We now pause to examine the behavior of our Mooney-Rivlin second

grade solid when it undergoes some classic experiments of viscoelastic-

ity, namely the creep experiment and the recovery experiment. These are

quasi-static experiments, so that the inertial term on the right hand-side of

Eq. (11) may be neglected; in other words, π3 ¿ 1 here. Then, integrating

with respect to Y gives

µuY + νuY t + α1uY tt = const., (12)

the constant being dictated by the type of experiment to be modeled. For

creep and for recovery, the shearing deformation is considered homogeneous

so that here, u is of the form u(Y, t) = K(t)Y . For recovery, K → 0 as

t→∞ and for creep, K tend to a finite value, K0 say. Hence the governing

equations are

K +Kτ + εKττ = K0, K +Kτ + εKττ = 0, (13)

for creep and for recovery, respectively. Here, Eq. (12) has been non-

dimensionalized by the scaling τ = µt/ν (note that ν/µ is usually called

the relaxation time) and by the introduction of the dimensionless pa-

rameter ε = µα1/ν
2. When ε = 0, we recover the classical solutions
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K(τ) = K0(1 − e−τ ) and K(τ) = K0e−τ for the creep problem and for

the recovery problem, respectively, where K0 is the steady state amount of

shear. When ε ≤ 1/4, the general solutions of Eq. (13) are also damped,

but when when ε > 1/4, the parameter α1 (> 4ν2/µ) modifies the nature

of the solutions. Hence for the recovery experiment, the solution is of the

form

K(τ) = K0e−τ/2ε cos(
√
4ε− 1 τ/2ε), (14)

clearly highlighting that microstructural oscillations come into play.

Now turning back to the dynamic equation Eq. (11), we consider a

slab of thickness L in the Y direction, and we introduce the dimensionless

variables ξ := Y/L and τ :=
√

µ/(ρL2) t. Also, we consider the case where

ν ≡ 0 (no Newtonian viscosity); then Eq. (11) is recast as

uξξ +
α1
ρL2

uξξττ = uττ , (15)

where we note that the quantity α1/(ρL
2) is a dimensionless parameter.

Let the slab be sandwiched between two rigid plates, one at the bottom

ξ = 0, oscillating with frequency ω and displacement U cosωt (say) and

one at the top ξ = 1, at rest. We seek an exact solution to Eq. (15) in

separable form, u = Uφ(ξ) cos(ωt), say. Then φ satisfies
(

1− α1ω
2

µ

)

φ′′ +
ρL2ω2

µ
φ = 0, φ(0) = 1, φ(1) = 0. (16)

When α1 = 0, we recover the classical elastic case solution,

φ(ξ) =
sin
√

ρ/µ Lω(1− ξ)
sin
√

ρ/µ Lω
. (17)

When α1ω
2/µ < 1, the solution is essentially of the same nature:

φ(ξ) =
sinα(1− ξ)

sinα
, with α :=

√

ρ/µ Lω
√

1− (α1/µ) ω2
, (18)

and so, at “low” frequencies there is no fundamental difference between

the purely elastic case and the Mooney-Rivlin second grade solid. When

α1ω
2/µ > 1 however, the microstructure (via the parameter α1) dramati-

cally alters the response of the viscoelastic slab, because then the solution

is in the form

φ(ξ) =
sinhβ(1− ξ)

sinhβ
, with β :=

√

ρ/µ Lω
√

(α1/µ) ω2 − 1
. (19)
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Hence at “high” frequencies, the vibrations engendered in the slab by

the lower plate are localized near the vibrating plate; the oscillations are

“trapped” in the microstructure. Figure 1 shows the variations of the os-

cillations’s amplitude through the thickness of the slab. Figure 1(a) repre-

sents φ(ξ) given by Eq. (18) for α = 5, 9, 23; these vibrations are sinusoidal,

with resonance occurring at α = nπ. Figure 1(b) represents φ(ξ) given

by Eq. (19) for β = 5, 9, 23; the amplitude is rapidly attenuated through

the thickness; note that as α1ω
2/µ approaches 1 from above, the quan-

tity β tends to infinity, and the localization is greater and greater until at

α1ω
2/µ = 1, we have perfect isolation. These attenuation effects can exist

in viscoelastic solids for which ν 6= 0, α1 = 0, but at the expense of canoni-

cal energy dissipation. Here we emphasize that the results are obtained for

a Mooney-Rivlin solid of second grade with no Newtonian viscosity, ν = 0,

so that by Eq. (6), the canonical energy is conserved.
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Figure 1. Influence of the microstructure on the oscillations of a slab fixed on one end.

At low frequencies: oscillations; at high frequencies: attenuation.
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4. Finite amplitude transverse plane waves

In this Section we consider the following class of motions

x = γX + u(z, t), y = γY + v(z, t), z = λZ, (20)

that is, motions describing a transverse wave, polarized in the (XY ) plane,

and propagating in the Z direction of a solid subject to a pure homogeneous

equi-biaxial pre-stretch along the X, Y , and Z axes, with corresponding

constant principal stretch ratios γ, γ, and λ (γ2λ = 1). Here u and v are

yet unknown scalar functions. Then the geometrical quantities of interest

are

B =





γ2 + λ2u2z λ2uzvz λ2uz
λ2uzvz γ2 + λ2v2z λ

2vz
λ2uz λ2vz λ2



 , B−1 =





λ 0 −λuz
0 λ −λvz
−λuz −λvz λ(u2z + v2z) + γ4



 ,

(21)

and the kinematical quantities of interest are

A1 =





0 0 uzt
0 0 vzt
uzt vzt 0



 , A2
1 =





u2zt uztvzt 0

uztvzt v2zt 0

0 0 u2zt + v2zt



 , (22)

and

A2 =





0 0 uztt
0 0 vztt
uztt vztt 2(u

2
zt + v2zt)



 , (23)

and the first two invariants are

I1 = 2γ2 + λ2 + λ2(u2z + v2z), I2 = 2λ+ γ4 + λ(u2z + v2z). (24)

Now the equations of motion, in the absence of body forces, are given

in current form as div T = ρẍ, or here,

−∂p
∂x

+
∂T13
∂z

= ρutt, −∂p
∂y

+
∂T23
∂z

= ρvtt,
∂T33
∂z

= 0. (25)

Differentiating these equations with respect to x, we find pxx = pyx = pzx =

0, so that px = p1(t), say. Similarly, by differentiating the equations with

respect to y, we find py = p2(t), say. Now the first two equations reduce to

− p1(t) + (Quz)z + νuzzt + α1uzztt = ρutt,

− p2(t) + (Qvz)z + νvzzt + α1vzztt = ρvtt, (26)
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and the third equation determines p. Here, Q = Q(u2z + v2z) is the general-

ized shear modulus, now defined by

Q = 2(λ2∂Σ/∂I1 + λ∂Σ/∂I2). (27)

Following Destrade and Saccomandi8, we take the derivative of Eqs. (26)

with respect z, we introduce the notations U := uz, V := vz and the

complex functionW := U+iV , and we recast Eq. (26) as the single complex

equation

(QW )zz + νWzzt + α1Wzztt = ρWtt, (28)

whereQ is now a function of U 2+V 2 alone, Q = Q(U2+V 2). We decompose

the complex function W into modulus and argument as

W (z, t) = Ω(z, t) exp(iθ(x, t)), (29)

say, and we seek solutions in the separable forms,

Ω(z, t) = Ω1(z)Ω2(t), θ(x, t) = θ1(x) + θ2(t), (30)

say. The solutions obtained from this ansatz are remarkable, first of all be-

cause they reduce the partial differential equation Eq. (28) to a system of

ordinary differential equations, and also because they contain the general-

ization to a nonlinear setting of often encountered classes of wave solutions,

such as damped and attenuated plane waves.

It is interesting to note that in some cases, the solutions of Eqs. (28)

are similar to the classical viscoelastic case. For example, when we restrict

our attention to the following generalized oscillatory shearing motion

W (z, t) = [ψ(t) + iφ(t)]ei(kz−θ(t)), (31)

where k is a constant and ψ, φ, and θ are function of time alone, we re-

cover for our present setting the same equations (and therefore the same

solutions) as those already reported by Destrade and Saccomandi8 in the

context of compressible dissipative solids. Establishing a formal correspon-

dence requires the replacement of their density ρ0 with the positive quantity

ρ + k2α1 here; it also shows that no noticeable differences arise from the

introduction of strong rate effects. For instance, such is the case when we

consider, at ν = 0, circularly polarized harmonic waves in the form

u(z, t) = A cos(kz − ωt), v(z, t) = ±A sin(kz − ωt). (32)

Now, U2+V 2 = A2k2 and thereforeQ is independent of z; then the equation

of motion Eq. (28) leads to the following dispersion equation:

Q(A2k2) = (ρ+ k2α1)ω
2, (33)
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which is similar to the equation for the purely elastic case.

When we consider generalized shear sinusoidal standing waves8, we ob-

tain more noticeable results. Hence Carroll9 took

u(z, t) = φ(z) cosωt, v(z, t) = φ(z) sinωt, (34)

where φ depends on z only. Then Eq. (28), written at ν = 0, reduces to

{[Q(Φ2)− α1ω2]Φ}′′ + ρω2Φ = 0, (35)

where Φ := φ′. Here the main difference between this equation and the

corresponding equation in the purely elastic case is the introduction of a

characteristic dispersive length α1ω
2. We also note that Eq. (35) is remark-

able because the usual substitution for autonomous equations, Ψ(Φ) = Φ′,

reduces this equation to a linear first order differential equation in Ψ2, so

that many solutions can be found in analytical form.

5. Concluding remarks

We showed in this note that dispersion and dissipation are strongly corre-

lated for the solid of second grade. We provided several interesting exact

solutions in special cases, and gave pointers on how to reduce the general

dynamical equations down to ordinary differential equations. As it hap-

pens, some methods and results developed elsewhere in the literature can

be applied to the present framework in a straightforward manner.

Our next step will be to extend the present model for a solid of second

grade to a wider nonlinear setting, by taking the microstructural parameter

α1 to be a function of the invariants and no longer a constant. In such a way,

it might be possible to balance dispersive and nonlinear effects, and perhaps

to obtain some solitons and compactons. That derivation would constitute

a major advancement in our understanding of the nonlinear mechanics of

solids, with many important technical applications.
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