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Summary In the context of the non-linear elasticity theory we consider a model for compressible solids called “compressible neo-
Hookean material”. We show how (exact) finite-amplitude inhomogeneous plane wave solutions and finite-amplitude unattenuated
solutions can combine to form a finite-amplitude Love wave. Also, we investigate the special case when the interface between the layer
and the substrate is in a principal plane of the pre-strain.

COMPRESSIBLE NEO-HOOKEAN MATERIALS

In the context of the finite elasticity theory we consider a model for compressible solids called “compressible neo-Hookean
material”. These non-linear elastic materials are characterized by their mass density (in the undeformed state) pg, by their
shear modulus 1, and by a constitutive function G(.J) describing the compressibility properties. The constitutive equation
for the Cauchy stress tensor T is

T=31G(J)1+puJ 'B, (D

where B is the left Cauchy-Green strain tensor and .J = (det B)/2.
WAVE SUPERPOSED ON STATIC DEFORMATION

First we assume that a compressible neo-Hookean material is first subjected to a static finite homogeneous deformation
x = FX, where F is a constant deformation gradient. On this state of deformation we superpose a time-dependent
displacement field representing a finite amplitude wave motion. Thus, a particle at position X moves to position X =
X + u(x,t), where u is the mechanical displacement. We look for solutions with a displacement field of the form u =
f(m-x)g(n-x — vt)a, where f and g are functions to be determined, and m, n and a are unit vectors. It is assumed that
m and n are not parallel and that a is orthogonal to both m and n, so that the displacement field u represents a linearly-
polarized transverse wave with propagation speed v. It is shown that this displacement field is a solution of the equations
of motion if and only if f and g satisfy the equation [1]

(n-Bn—p " pgv®) fg" +2n-Bmf'g' + m-Bmf"g =0, )

where f/ and ¢’ denote the derivatives of f and g with respect to their argument. We then choose m and n such that [2]
n - Bm = 0, which means that m and n are along the principal axes ofhe elliptical section of the ellipsoid x - Bx = 1 by
the plane a - x = 0. In such a case, we obtain two kinds of exact solutions, unattenuated time-harmonic wave solutions

u(x,t) = {B sin(im X) + Ocos(im . x)} Cos <:2(n SX — vt)) a, 3)
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provided v? > v2, and inhomogeneous time-harmonic wave solutions

u(x,t) = Aexp (Jm . x) cos (h(n X — vt)) a, 4

m n
provided v? < vﬁ. Here, k, B, C, v, A are arbitrary constants, and vy, v, are the wave speeds of homogeneous bulk
waves propagating along m and n, respectively, and are given by pov2, = pm-Bm , povZ = un - Bn.

FINITE-AMPLITUDE LOVE WAVES

Next we extend the classical results of Love [3] for linear elasticity theory in two directions: by taking into account initial
stresses, and by allowing the wave amplitude to be arbitrarily large. We keep Love’s original set-up, which consists of a
semi-infinite substrate, covered with a layer of finite thickness h. The two solids are deformed and bonded rigidly. Here
we assume that both the substrate and the layer are made of different ‘compressible neo-Hookean materials’, characterized
by po, o and G for the substrate, and by po, i and G for the layer, and have been subjected to the homgeneous strains
B and B, resRectively. It is seen that B in the substrate ii determined from B in the layer, and here we assume that
n-Bm = n-Bm = 0. In particular, it follows n - Bn = n - Bn.

As in the classical linear case, we focus on linearly-polarized transverse waves, propagating in a direction n and polarized
in a transverse direction a, both parallel to the interface. Thus, (n,a, m) forms an orthonormal triad. In the substrate,
we require that the amplitude of the wave decays in the direction of m, and hence the displacement field u is assumed to



be of the form (4). In the layer, we consider an unattenuated time-harmonic displacement field u of the form (3). As in
the classical case, we combine these exact wave solutions in order to obtain a global time-harmonic wave motion with
propagation speed v. Note that both displacement fields need to be of the same angular frequency, and hence of the same
wavenumber k, in order to satisfy boundary conditions. Thus, we use (4) for the substrate and (3) for the layer, with

= v
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where the body waves speeds vn, Um, Un, Um are given by povZ = um - Bm , pov2 = pn - Bn , jo0% = fim - Bm
, pov2 = pm - Bn. The Love wave speed v has to satisfy v2 < v? < v2; thus, Love waves require the combination
of a ‘slow’ (or ‘soft’) layer over a ‘fast’ (or ‘hard’) substrate, independently of the initial pre-strain. We show that the
expression of the boundary conditions lead to a dispersion equation and to the determination of the constants A, B, C' in
terms of a single parameter characterizing the amplitude of the wave. The first and second boundary conditions require
the continuity of the displacement and of the stress vector at the layer/substrate interface, and the third condition requires

that there is no additional traction at the upper face of the layer. These conditions lead to the dispersion equation

&)

tan (kA (G /Tm) v/ (0/T0)2 — 1] — % W —0, ©6)

where ¢ and ¢ are the transverse bulk wave speeds in the undeformed substrate and layer, respectively. This dispersion
equation is similar to that of the linear case, but the scope of the results is now richer because they include large amplitude
and pre-stress.

INTERFACE IN A PRINCIPAL PLANE

For a given static strain B in the layer and a given unit vector m, there is, in general, only one direction n in the interface
along which a finite-amplitude Love wave as described previously may propagate. However, if m is along a principal axis
of B, then n - Bm = n - Bm = 0 is satisfied for any propagation direction n orthogonal to m and so, n may be along any
direction in the interface. It is shown that the number of possible modes for a given value of the dispersion parameter kh
is not necessarily the same for all n. In the figure, a value of kh has been chosen so that two modes with speeds vy, vy are
possible for all directions n.

Figure 1. Polar graph of the Love wave speeds v; and vz as a function of the angle 6 that the propagation direction n makes with the
principal direction i in the interface.
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