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ABSTRACT

Our main aim in the present investigation is to revisit the pure bending of a thick rubber
block deforming in plane strain, a problem that was first investigated in [1]. In particular, we
show that for an incompressible neo-Hookean material the instability is of Euler type, with
a well defined characteristic wavelength. The surface instabilities reported in [1] for different
constitutive assumptions are likely to be erroneous, for reasons that we shall explain.
The undeformed geometry is assumed to be characterised by three parameters: 2L (length),
H (height) and 2A (thickness). Due to the plane strain hypothesis, it is enough to confine our
attention to the cross sections (shown shaded below) perpendicular to the vertical axis of the
block and situated sufficiently far away from the lower and upper faces.
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Figure 1: Cylindrical bending of a rubber block

The reference configuration
{

(X1, X2) ∈ R2
∣

∣ − A ≤ X1 ≤ A, −L ≤ X2 ≤ L
}

is mapped
onto

{

(r, θ) ∈ R × (−π, π]
∣

∣ r1 ≤ r ≤ r2, −ω0 ≤ θ ≤ ω0

}

via the pure bending deformation.
It is well known that its expression is given by r = (d + 2X1/ω)1/2, θ = ωX2, where d is a
quantity determined by the particular constitutive equation adopted and ω serves as a control
parameter, being related to the angle of bending ω0 ≡ ωL ∈ [0, π). We use this deformation as
the basic state on which we superimpose an infinitesimal perturbation. The stability equations
that follow by linearising the two-dimensional field equations are recorded in [2], where it is
showed further that they can be reduced to a single fourth-order PDE with variable coefficients
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by introducing an incremental displacement potential, φ(r, θ). The analysis is simplified by
looking for a normal mode solution φ(r, θ) = Φ(r) cos(mθ), where m ∈ N is the azimuthal
mode number related to the number of ripples on the compressed (inner) face of the block;
satisfying boundary conditions turns out to impose a constraint that takes the formm = nπ/ω0,
for some n ∈ N.
Next, the bulk material is modelled by a simple neo-Hookean strain-energy function,
W(λr, λθ) ∝ (λ2

r + λ2

θ − 2), where the principal stretches λr and λθ are associated with the
Eulerian principal directions. Due to the incompressibility constraint, these can be written as
λr ≡ λ−1 and λθ ≡ λ = ωr, which defines the notation λ. For this particular constitutive
choice, d mentioned above is determined by d = (L/ω0)2(1 + 4η2ω2

0)
1/2, with η ≡ H/L.

After lengthy algebraic manipulations, the ODE satisfied by Φ can be showed to be

ρΦ′′′′−2Φ′′′+P(ρ; ω0, n)Φ′′+R(ρ; ω0, n)Φ′+ρn4π4Φ = 0, in ρ1(ω0, η) < ρ < ρ2(ω0, η) ,

where ρ = r/L, P(ρ; ω0, n) = O(n2) = R(ρ; ω0, n) as n → ∞, and ρ = ρj (j = 1, 2)
represent the equations of the two curved boundaries of the bent rubber block; we note also
that the principal stretch in the eθ-direction assumes the simple form λ = ω0ρ. In solving
the eigenproblem for the pure bending eigenmodes not only do we have to find λ, but the
parameter n must also be identified such that λ1 ≡ λ(ρ1) is maximum. Our direct numerical
simulations (details of which can be found in [2]) showed that the number of ripples on the
compressed side of the block increases with the non-dimensional thickness η. When this latter
quantity is reasonably large (η ! 3) the critical mode numberm always corresponds to n = 1.
The conclusion that emerges is that the behaviour of a very thick block can be understood in
two different ways: either (i) assuming that n = 1 and η ≫ 1 or (ii) fixing η = O(1) and
letting n ≫ 1. We have pursued the latter alternative and showed that asymptotic results can be
obtained easily by using classical boundary-layer theory or WKB methods; such approaches
lead to the following expressions for the critical bending angle (ω0) or the critical stretch (λ1)

ω0 = Ω0 + n−1Ω1 + n−2Ω2 + . . . ,

Ω0 = 0.7718 , Ω1 = −0.4156 , Ω2 = 1.5600 ,

and
λ1 = Λ0 + n−1Λ1 + n−2Λ2 + . . . , (1)

Λ0 = 0.543689 , Λ1 = 0.1228 , Λ2 = −0.4240 .

As expected, Λ0 ≃ 0.544 represents the critical value of the principal stretch for the surface
instability of a compressed neo-Hookean half-space (as originally found by M.A. Biot), while
the next-order corrections in formula (1) account for the finite size of the rubber block.
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