

MA302 Complex Variable, Problem Sheet 1

1. Express the following in the form $x + iy$ and draw them in the complex plane.

$$(a) \frac{2-3i}{4-i}; \quad (b) \frac{1+2i}{3-4i} + \frac{2-i}{5i}; \quad (c) \frac{5}{(1-i)(2-i)(3-i)}; \quad (d) \frac{1}{(1+i)^{-2}}.$$

2. Show that, for all complex numbers z, z_1, z_2 :

$$(a) \overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}; \quad (b) \overline{-z} = -\overline{z}; \quad (c) \overline{z_1 z_2} = \overline{z_1} \overline{z_2}; \quad (d) \overline{z^{-1}} = \overline{z}^{-1};$$

$$(e) \operatorname{Re}(z) = \frac{1}{2}(z + \overline{z}); \quad (f) \operatorname{Im}(z) = \frac{1}{2i}(z - \overline{z}); \quad (g) \overline{\overline{z}} = z.$$

3. Show that, for all $z, z_1, z_2 \in \mathbb{C}$ (a) $|z_1 z_2| = |z_1| |z_2|$; (b) $|z^{-1}| = |z|^{-1}$; (c) $|\overline{z}| = |z|$.

4. Express each of the following in polar form and draw them in the complex plane.

$$(a) 2 - 2i; \quad (b) -1 + \sqrt{3}i; \quad (c) \sqrt{2}i; \quad (d) \frac{-2}{1 + \sqrt{3}i}.$$

5. (a) Let n be an integer. Show that if z is a complex number with $z^n = 1$, then $\overline{z}^n = 1$ as well.

(b) Find *all* complex numbers z satisfying $z^3 = 1$ and draw them in the complex plane.

6. Prove the Triangle Inequality: $|z_1 + z_2| \leq |z_1| + |z_2|$ for all $z_1, z_2 \in \mathbb{C}$.

[Hint. $|z_1 + z_2|^2 = z_1 \overline{z_1} + 2\operatorname{Re}(z_1 \overline{z_2}) + z_2 \overline{z_2} \leq |z_1|^2 + 2|z_1||z_2| + |z_2|^2 = (|z_1| + |z_2|)^2$.]

MA302 Complex Variable, Problem Sheet 2

1 Find all possible values of the following roots and locate them graphically.

(a) $(-1 - \sqrt{3}i)^{1/2}$, (b) $(-4 + 4i)^{1/5}$, (c) $(-8)^{1/3}$, (d) $(-11 - 2i)^{1/3}$.

2 Solve the equations

(a) $z^4 + 81 = 0$;

(b) $z^6 + 1 = \sqrt{3}i$.

3 Find the images of the following curves under the mappings $f(z) = z^3$ and $g(z) = \frac{1}{z}$.

(a) Rays emanating from the origin.

(b) Circles centred at the origin.

Your answer should be like “the image of the ray emanating from the origin at an angle θ with the x -axis is ... because ...” and similarly for circles.

4 Find the following limits. (a) $\lim_{z \rightarrow 2i} (iz^4 + 3z^2 - 10i)$

(b) $\lim_{z \rightarrow 2i} \left(\frac{z^2 + 4}{z - 2i} \right)$

(c) $\lim_{z \rightarrow 1+i} \left(\frac{z-1-i}{z^2 - 2z + 2} \right)^2$

5 Describe the following sets in words and sketch them.

(a) $\{z \in \mathbb{C} \mid 3 = |z - 2 + i|\}$ (b) $\{i + 2e^{i\theta} \mid 0 \leq \theta < 2\pi\}$

(c) $\{t^2 + it \mid 0 \leq t \leq 2\}$

6 Find $f'(z)$ in the following cases.

(a) $f(z) = 3z^2 - 2z + 4$ (b) $f(z) = (1 - 4z^2)^3$ (c) $f(z) = \frac{z-1}{2z+1}$
 $(z \neq \frac{1}{2})$

MA302 Complex Variable, Problem Sheet 3

1. Express the following complex numbers in the form $x+iy$, $x, y \in \text{Re.}$
 - $\frac{1+2i}{3-4i} - \frac{4-3i}{2-i}$
 - $e^{2+\pi i/2}$
 - $\overline{(2-3i)}(2+i)$
 - $[\sqrt{2}(1-i)]^7$
2. Let $f(z) = \exp(z) = e^z$. Find the images under f of (a) the vertical line where $\text{Re}(z) = a$ and (a) the horizontal line where $\text{Im}(z) = b$, where $a, b \in \text{Re}$ are constants.
3. For each of the following functions show that $f'(z)$ does not exist at any point ~~away from \mathbb{C}~~ .
 - $f(z) = f(x, y) = 2x+iy^2$
 - $f(z) = z-\bar{z}$
 - $f(z) = z^2\bar{z}$
 - $f(z) = f(x, y) = e^x e^{-iy}$
4. For the following functions determine where $f'(z)$ exists and find its value. Here $z = x + yi$.
 - $f(z) = x^2 + i(y^2 - 4y)$
 - $f(z) = x^2 + i y^2$
 - $f(z) = z \text{Im}(z)$
5. Suppose $f(z) = f(x, y) = u(x, y) + iv(x, y)$ is complex differentiable, where u and v are real valued functions. Show that

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \quad \text{and} \quad \frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = 0.$$

MA302 Complex Variable, Problem Sheet 4

1. Compute the following.
(a) $\log(3 + 2i)$ (b) $\log(1 - i)$ (c) $\sin(i)$ (d) $\cos(\pi i)$
2. Find all solutions to the following equations.
(a) $e^{2z} - 2i = 0$ (b) $\sin(z) + 2i = 0$ (c) $(z - i)^5 = 1$ (d)
$$z^3 = 1 + i$$
3. Verify the following identities.
(a) $\sin^{-1}(z) = -i \log(iz + (1 - z^2)^{1/2})$ (b) $\tan^{-1}(z) = \frac{i}{2} \log \frac{i + z}{i - z}$
4. For each of the following real valued functions of two real variables decide whether they are harmonic and if so find a harmonic conjugate.
(a) $u(x, y) = x^2 - y^2$ (b) $u(x, y) = xy^3 - x^3y$ (c) $u(x, y) = x^3 + y^3$
5. Find all points where $f(z) = f(x + iy) = x^3 - 2x^2 - 3xy^2 + i(3yx^2 - y^3 + y^2)$ is differentiable.

MA302 Complex Variable, Problem Sheet 5

1. For a real variable x , the hyperbolic sinc and cosine are defined as

$$\sinh(x) = \frac{1}{2}(e^x - e^{-x}) \quad \text{and} \quad \cosh(x) = \frac{1}{2}(e^x + e^{-x}).$$

For (i) $f(z) = \sin(z)$ and (ii) $f(z) = \cos(z)$ with $z = x + iy$ find the real part $u(x, y)$ and imaginary part $v(x, y)$ of f as functions of x and y .

2. Decide which curves are defined by the following parameterisations and draw them in the complex plane. Then find parametrisations for the same curves with the opposite orientation.

- (a) $z(t) = 1 + 2\cos(t) + i\sin(t)$, $0 \leq t \leq 2\pi$
- (b) $z(t) = t - 2 + it^2 + 3i$, $0 \leq t \leq 2$

3. Find parametrizations of the following curves.

- (a) The positively (outer clock-wise) oriented circle $|z - 4i| = 2$.
- (b) The line segment from $2i - 1$ to $6 + 3i$.
- (c) The semicircle through $-2i$, 2 and $2i$.

4. Evaluate the following contour integrals.

$$\int_C (|z| + \bar{z}) dz, \quad \int_C (z \operatorname{Re}(z) - \bar{z} \operatorname{Im}(z)) dz \quad \text{and} \quad \int_C (z^2 - (2-3i)z + i) dz$$

where C is

- (a) the line segment from -1 to i ;
- (b) the quarter circle connecting -1 to i ;
- (c) the path that follows the x -axis from -1 to 0 and from there the y -axis to i .

MA302 Complex Variable, Problem Sheet 6

1. Evaluate the following integrals when C is the positively oriented boundary path of the square with vertices ± 2 and $\pm 2i$.

$$(a) \int_C \frac{z^2 - 4z}{(z-1)^3} dz \quad (b) \int_C \frac{e^{2z} - z^2}{(1-i)^7} dz$$

2. Verify that $\int_a^b |z'(t)| dt$ is the length of the curve $z : [a, b] \rightarrow \mathbb{C}$ for

- (a) the straight line segment from z_0 to z_1
- (b) a circle of radius R centered at z_0

3. Evaluate the following contour integrals

$$\int_C (|z| + \bar{z}) dz, \quad \int_C (z\bar{z} + z^2) dz \quad \text{and} \quad \int_C (z^2 - (2-3i)z + i) dz$$

where C is (a) the line segment from -1 to i and (b) the quarter circle connecting -1 to i .

4. Suppose $f(z)$ is analytic. Show that if $f'(z) = 0$, then $f(z)$ is constant.

5. Show that if f is analytic in the disc of radius R about 0 , then so is $g(z) = \overline{f(\bar{z})}$.

MA302 Complex Variable, Problem Sheet 7

1. Find all values of $\log(1+i)$

$$(a) \log(1+i) \quad (b) (1+i)^{2i} \quad (c) \cos^{-1}(3i) \quad (d) (3i-3)^{1/6}$$

2. Let $f(z) = \frac{z-4i}{(z^2+4)(z-i)}$. Allowing only positively oriented simple closed curves C , how many different values can $\int_C f(z) dz$ have?

3. Let C be the circle with parametrisation $z(t) = a + e^{it}$, where a is a constant. Evaluate the following integrals depending on a .

$$(a) \int_C \frac{e^z \sin(z)}{(z-a)^3} dz \quad (b) \int_C \frac{z^2 + iz - 5 + i}{(z-1)^2} dz$$

4. State Cauchy's Integral Formula for Derivatives and use it, if applicable, to evaluate the following integrals, where C is the positively oriented circle of radius 3 centred at 1.

$$(a) \int_C \frac{4iz^3 e^z}{(z-i)^3} dz \quad (b) \int_C \frac{\sin(z)}{(z+3i)^5} dz$$

5. Find the Taylor series for $\sin(z)$ centered at (a) zero and (b) $\frac{\pi}{2}$.

6. Find the Laurent series with centre 0 for $\frac{e^{z^2}}{z^3}$. Where in the complex plane does this series converge.

7. Find the Laurent series of

$$\frac{1}{(z-4)(z-6)}$$

(a) with centre $z = 4$ if (i) $0 < |z-4| < 2$ (ii) $|z-4| > 2$,

(b) with centre $z = 6$ if (i) $0 < |z-6| < 2$ (ii) $|z-6| > 2$.

8. Verify by direct calculation, i.e. without the use of any of Cauchy's Formulæ, that

$$\int_C \frac{1}{(z-z_0)^n} dz = \begin{cases} 2\pi i, & \text{if } n = 1 \\ 0, & \text{otherwise} \end{cases}$$

9. Find the residues of $f(z) = \frac{z^2 - iz}{(z^2 + 1)(z - 2i)^2}$ at all its poles.

10. Find the integral of the function in Q9 around the simple closed curve which encloses (i) $-i$ (ii) $2i$ (iii) i (iv) $-i$ and $2i$.