

MA313 Linear Algebra

Video 6: Further examples of subspaces

Tobias Rossmann
NUI Galway

Recall

$\mathbb{P}_n = \{a_0 + a_1t + \cdots + a_nt^n : a_0, \dots, a_n \in \mathbb{R}\}$ is the vector space of polynomials of degree at most n in the variable t .

Definition

$$\mathbb{P} := \bigcup_{n=0}^{\infty} \mathbb{P}_n = \{p(t) = a_0 + a_1t + \cdots + a_nt^n : n \geq 0; a_0, \dots, a_n \in \mathbb{R}\}$$

is the vector space of all polynomials in t (without any bounds on the degree!).

Here, the addition and scalar multiplication in \mathbb{P} are just the usual operations: we add and multiply as expected.

Fact

- \mathbb{P}_m is a subspace of \mathbb{P}_n if and only if $m \leq n$.
- \mathbb{P}_n is a subspace of \mathbb{P} for all $n \geq 0$.

Note that

$$\begin{aligned}\mathbb{P}_0 &= \mathbb{R} = \text{constant polynomials} \\ &= \{p(t) \in \mathbb{P} : p'(t) = 0\}\end{aligned}$$

where the **derivative** of $p(t) = a_0 + a_1t + \cdots + a_nt^n$ is

$$p'(t) = a_1 + 2a_2t + \cdots + na_nt^{n-1}.$$

More generally,

$$\mathbb{P}_n = \left\{ p(t) \in \mathbb{P} : p^{(n+1)}(t) = 0 \right\}.$$

Punchline: the subspaces \mathbb{P}_n of \mathbb{P} can be described as solutions of certain equations!

Example

Let $\mathbb{D} \subseteq \mathbb{R}$ be a subset. Let V be the vector space of all functions $\mathbb{D} \rightarrow \mathbb{R}$ from before.

Recall:

- $(f + g)(x) = f(x) + g(x)$ for $f, g \in V$ and $x \in \mathbb{D}$
- $(cf)(x) = cf(x)$ for $f \in V$ and $c \in \mathbb{R}$

Let

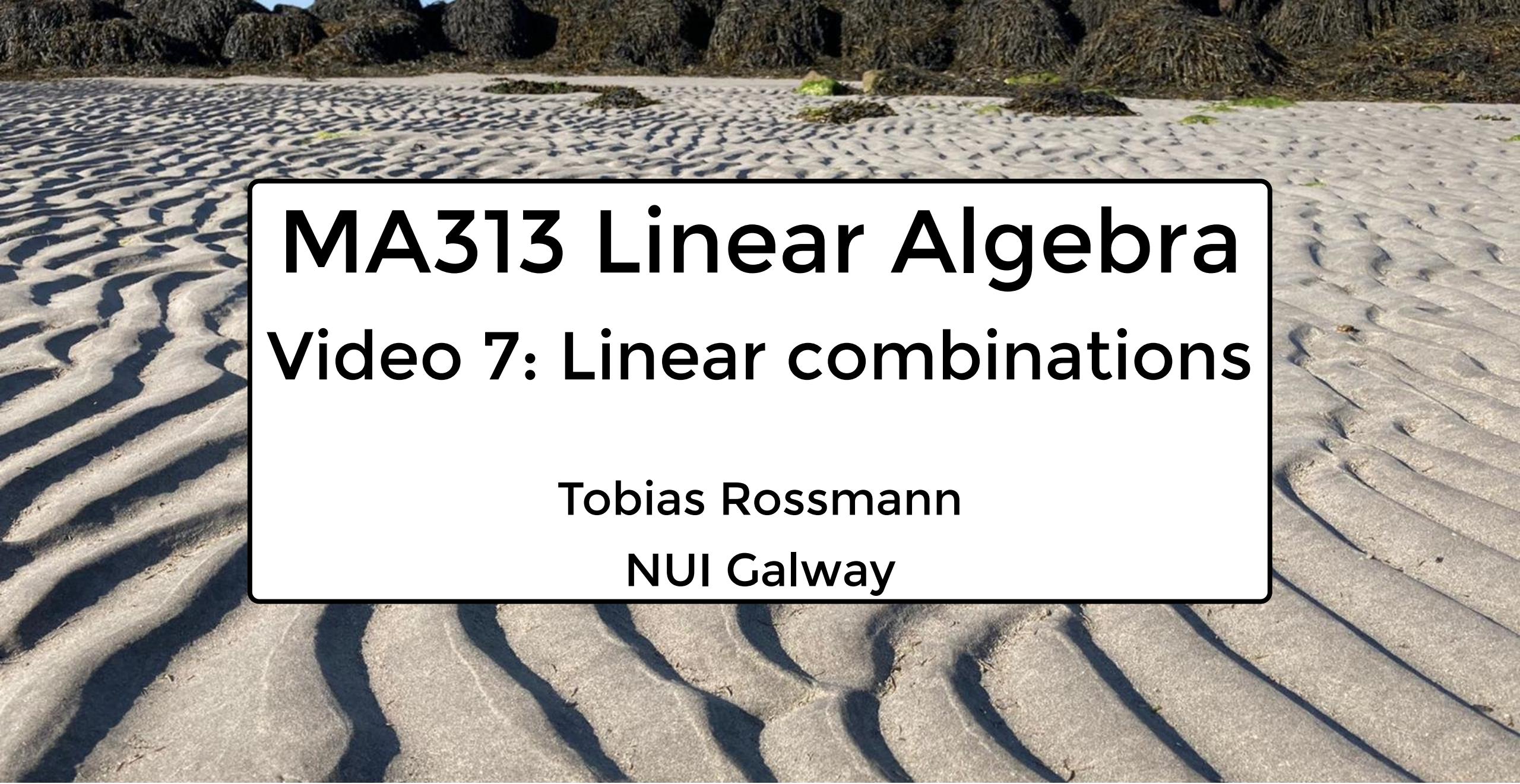
$$C(\mathbb{D}) := \{f: \mathbb{D} \rightarrow \mathbb{R} : f \text{ is continuous}\} \subseteq V.$$

Theorem

$C(\mathbb{D})$ is a subspace of V .

Why? Calculus!

- Constant functions are continuous. In particular, the zero vector of V (= the constant function with value zero) belongs to $C(\mathbb{D})$.
- Sums and products of continuous functions are continuous. Hence, $C(\mathbb{D})$ is closed under addition and scalar multiplication (= multiplication by constant functions).



MA313 Linear Algebra

Video 7: Linear combinations

Tobias Rossmann
NUI Galway

Question

How can we describe *all* subspaces of a given vector space?

Example

There are precisely three types of subspaces of \mathbb{R}^2 :

- $\{0\}$,
- \mathbb{R}^2 , and
- lines through the origin.

Question

How do subspaces arise in "nature"?

- **From the top:**
all vectors that have "suitable properties"
- **From the bottom:**
start with some collection of vectors and consider the subspace that they "span"

Definition

A **linear combination** of vectors u_1, \dots, u_p in some vector space is a vector of the form

$$c_1 u_1 + \dots + c_p u_p$$

for scalars $c_1, \dots, c_p \in \mathbb{R}$.

Example

In \mathbb{R}^2 , $\begin{bmatrix} 2 \\ -3 \end{bmatrix}$ is a linear combination of $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

Example

Is $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ a linear combination of $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$ and $\begin{bmatrix} -4 \\ -6 \end{bmatrix}$ in \mathbb{R}^2 ?