

MA313 Linear Algebra

Video 8: Spans

Tobias Rossmann
NUI Galway

Definition

Given vectors u_1, \dots, u_p in some vector space V , their **span** is

$$\text{span}\{u_1, \dots, u_p\} := \{c_1u_1 + \dots + c_pu_p : c_1, \dots, c_p \in \mathbb{R}\}.$$

In other words, $\text{span}\{u_1, \dots, u_p\}$ is the set of all linear combinations of u_1, \dots, u_p within V .

Theorem

$\text{span}\{u_1, \dots, u_p\}$ is a subspace of V .

In fact, one can show that $\text{span}\{u_1, \dots, u_p\}$ is the "smallest" subspace of V which contains each of u_1, \dots, u_p .

Immediate consequences

- Every choice of vectors u_1, \dots, u_p provides us with an example of a subspace of V .

(However, *different* sequences of vectors may well span the *same* subspace!)

- If we recognise a *subset* of V as a span, then we know it has to be a subspace!

Example

Let

$$H = \left\{ \begin{bmatrix} a - 3b \\ b - a \\ a \\ b \end{bmatrix} : a, b \in \mathbb{R} \right\}.$$

Claim: H is a subspace of \mathbb{R}^4 .

Problem (from 2018/2019 exam paper)

Find vectors $u, v, w \in V$ with $V = \text{span}\{u, v, w\}$, where V is the subspace of \mathbb{R}^4 consisting of all vectors of the form

$$\begin{bmatrix} 2a - c \\ -a \\ b + c \\ a - b \end{bmatrix}$$

for $a, b, c \in \mathbb{R}$.

Non-example

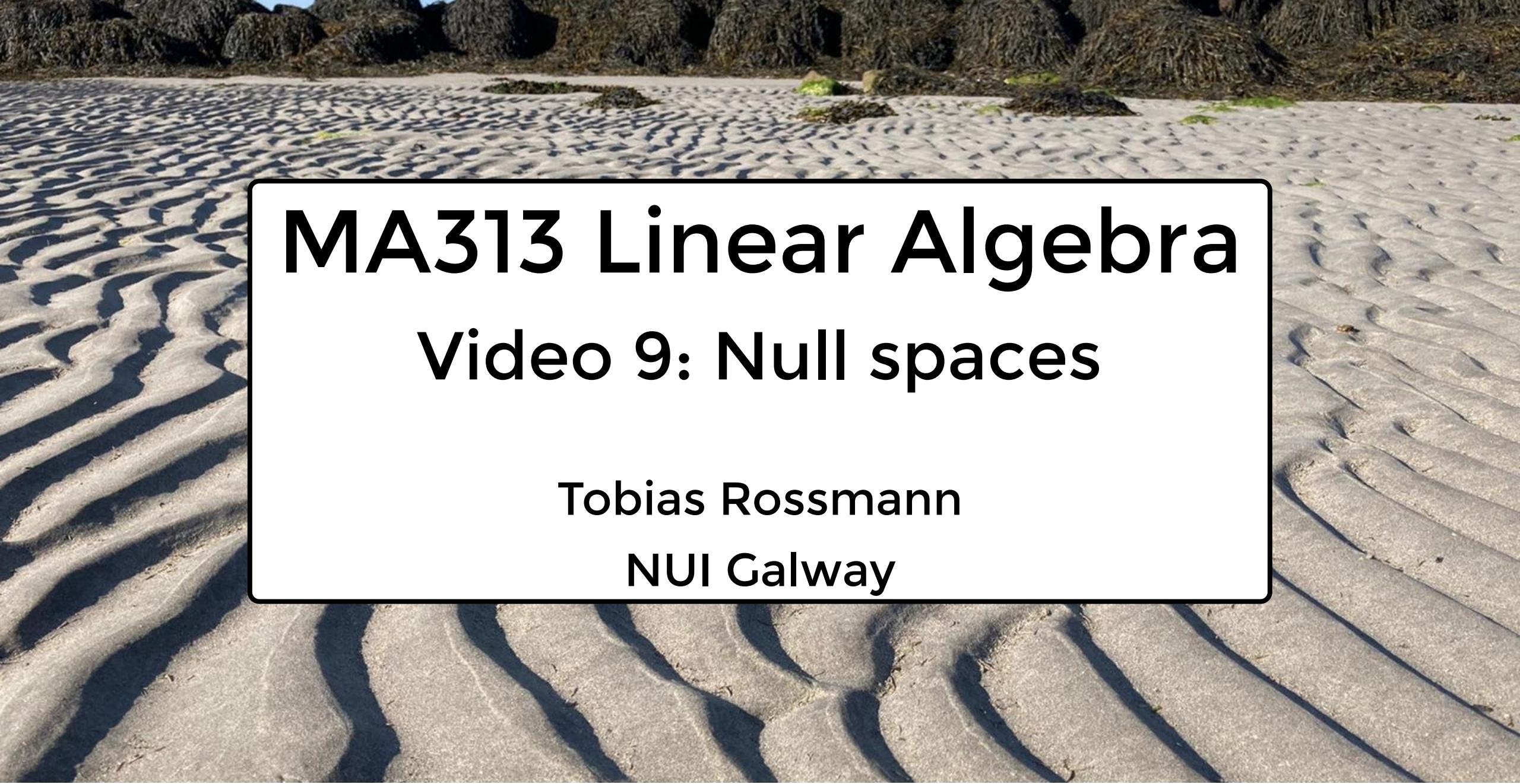
Let

$$H = \left\{ \begin{bmatrix} 3s \\ 2 + 5s \end{bmatrix} : s \in \mathbb{R} \right\}.$$

Is this a subspace of \mathbb{R}^2 ?

Question

Is every subspace the span of some (collection of) vectors?



MA313 Linear Algebra

Video 9: Null spaces

Tobias Rossmann

NUI Galway

Two main sources of subspaces

- Spans of vectors ("from the bottom").
- **Kernels** and **null spaces** of **linear transformations** ("from the top").

These objects generalise sets of solutions to homogeneous systems of linear equations.

Definition

Let A be an $m \times n$ matrix. The **null space** of A is

$$\text{Nul } A = \{x \in \mathbb{R}^n : Ax = 0\}.$$

Recall: for a matrix $A = [a_1 \cdots a_n]$ with columns $a_1, \dots, a_n \in \mathbb{R}^m$ and a vector $x \in \mathbb{R}^n$, we have

$$Ax = x_1 a_1 + \cdots + x_n a_n.$$

Example

Let

$$A = \begin{bmatrix} 1 & -3 & -2 \\ -5 & 9 & 1 \end{bmatrix}.$$

Then

$$A \begin{bmatrix} 5 \\ 3 \\ -2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

and hence $\begin{bmatrix} 5 \\ 3 \\ -2 \end{bmatrix} \in \text{Nul } A$.

On the other hand, $A \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -4 \\ 5 \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ so $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \notin \text{Nul } A$.

Theorem

Let A be an $m \times n$ matrix.

Then $\text{Nul } A$ is a subspace of \mathbb{R}^n .

This follows easily from familiar properties of matrix multiplication!

Namely,

- $A0 = 0$,
- $A(x + y) = Ax + Ay$, and
- $A(cx) = c(Ax)$

for all $x, y \in \mathbb{R}^n$ and $c \in \mathbb{R}$.

Curious contrast

- Given a matrix A , it is very easy to test if a given vector x belongs to $\text{Nul } A$.
(Just multiply A and x !)
- But how can we find non-zero vectors in $\text{Nul } A$ or prove that none exist?